
September 1987 UILU-ENG-87-2258
CSG-7 1

COORDINATED SCIENCE LABORATORY
College of Enginec,zir,g

MEASUREMENT-
RELIABILITY /
PERFORMABILIT
MODELS

-BASED

Y
'I

Mei-Chen Hsueh

(NASA-CR- 187 299) MEASUREMENT-BASED ~ a 7 - 2 9 ~ 5 0 EEL1 A B I L I TY /PERF0 B PI ABILITY R O D E L S
Oniv. a t UEbana-Champaign) 112 p A v a l l :
N"IS HC B06/MF A01 CSCL 14D tin cl a s

(I l l i a o i s

G3/38 0099027

BY

MEI-C" HSUEH

B.S.. Providence College of Arts and Science. 1972
M.S.. Portland State University, 1981

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign. 1987

Urbana. Illinois

iii

MEASUREMENT-BASED RELIABILIlT/PERFOFt.MABILIlT MODELS

Mei-Chen Hsueh. Ph.D.
Department of Computer Science

University of Illinois at Urbana-champaign. 1987
Ravi Iyer, Advisor

This thesis describes measurement-based models based on real error-data collected on

a multi-processor system. Models development from the raw error-data to the estimation

of cumulative reward is described.

A workloadheliability model is developed based on low-level error and resource

usage data collected on an IBM 3081 system during its normal operation in order to evalu-

ate the resource-usagderror/recovery process in a large mainframe system. Thus, both

normal and erroneous behavior of the system are modeled. The results provide an under-

standing of the different types of errors and recovery processes. The measured data show

that the holding times in key operational and error states are not simple exponentials and

that a semi-iMarkov process is necessary to model the system behavior. A sensitivity

analysis is performed to investigate the significance of using a semi-Markov process. as

opposed to a Markov process. to model the measured system.

A software reliability model is also developed based on low-level error data from the

M V S operating system running on an IEM 3081 machine to describe the software error and

recovery pmcess. The semi-Markov model developed provides a quantification of system

error characteristics and the interaction between d i e ren t types of errors. AS an example.

we provide a detailed model and analysis of multiple errors. which constitute approxi-

mately 17% of all software errors and result in considerable recovery overhead.

I
I
1
1
1
1)

1
1
I
I
1
I
1
I
I
1
]I,
I
I

iv

In addition, a me!asurement-based performability model based on real error-data col-

lected is proposed. A reward function, based on the m i c e rate and the error rate in each

state, is defintd in order to estimate the performability of the system and, to depict the cost

of difFerent error types and recovery procedures.

V

ACKNOWLEDGEMENT

I am sincerely grateful to my thesis advisor, Ravi Iyer. for his guidance and

encouragement. His aSSiStance was of tremendous value. I would also like to give thanks

to Professor Kishor Trivedi of Duke University fgr makhg available faciiities at Duke and

for valuable suggestions which provided additional breadth to this work.

Being a member of the Computer Systems Group has provided me with a continuous

source of encouragement, suggestions, support and friendship. I would especially like to

thank Pat Duba, Mark Sloan and Rene L l a m a for their valuable suggestions in the drafting

of this thesis and Joe Rahmeh for his technical assistance.

Finally, I would like to thank my mother for the extensive care she provided my fam-

ily. thereby making it possible for me to do my graduate work.

vi

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1. Thesis Objectives .. 1

1.2. Related Research ... 2

1.3. Thesis Overview 4

2 RESOUCE-USAGE/ERROR/RECOVERY MODELING
- 2.1. Workload Modeling ...

2.1.1. Resource Usage Characterization

2.1.2. Workload Clustering ...

2.1.3. Resource Usage Model ...

2.2. Error Modeling ...

2.2.1. Error Clustering ...

2.3. Recovery Modeling
2.4. Resource-Usage/Error/Recovery Model

2.4.1. Waiting and Holding Time Distributions
2.4.2. Recovery Distributions ..

2.5. Summary

6

6

6

7

10

13

14

15

17

19

23

25

3 MODEL ANALYSIS .. . 26

3.1. Model Parameters ... 26

3.2. Model Behavior .. 32

I
I
1
I

1
n

3.3. Effect of Workload ... 35

3.4. Model Validation ... 37

3.5. Markov Versus Semi-Markov ... 39

3.5.1. Unconditional transition probability (y) 39

42 3 S.2 . First Passage Time (0) ...
3.5.3. Summary .. 44

4 SOFTWARE RELIABILITY MODEL ...
4.1. Introduction ...

4.1.1. Related Research ..
4.2. Error Characterization ...

4.2.1. Multiple Errors ..

4.2.2. Recovery Modeling ...

4.3. Software Reliability Model ..

4.3.1. Overall Error/Recovery Model ..

4.3.2. Waiting Time Distributions ...

4.3.3. Recovery Time Distribution ..
4.3 .4 . st-y

4.4. Model Analysis ..
4.4.1. General Characteristics ..
4.4.2. Model Probabilities ..

4.4.3. Characteristics of A Multiple Error
4.5. Conclusion ..

45

45

46

47

48

49

54

54

56

58

60

60

60

62

63

65

5 PERFORMABILITY MODEL ...
5.1.

5.2.

5.3.

Reward Function ..
Semi-Markov to Markov Conversion ..
Performability Analysis

6 SUMMARY AND CONCLUSIONS ..
6.1. Summary of Results .+l..iii... ...
6.2. Suggestions for Future Research ..

REFERENCES
APPENDIX A ..

APPENDIX B ...

APPENDIX C ..

VITA . .. *I-.....*.

viii

66

66

69

70

78

78

81

82

84

86

95

100

LIST OF TABLES

ix

Table 2.1. Characteristics of workload clusters ..

Table 2.2. Frequency of errors ...
Table 2.3. Percentage distribution of recovery procedures ..
Table 2.4 Mean waiting time (in seconds) of states ...
Table 3.1. Mean time between errors ..
Table 3.2. Mean recurrence time ..

Table 3.3. Summary of model characteristics ..

Table 3.4. Holding time and transition probabilities to error states

Table 3.5. Comparison of occupancy probabilities for dserenf states

Table 3.6. Comparison of transition probabilities . yi ...

Table 3.7. Ratio of y i (Markov/semi-Markov) ...
3 Table 3.8. Ratio of 8 (Markovlsemi-Markov) ..

Table 4.1. Frequency of software errors ...

Table 4.2. Percentages of recovery attempts for a software error
Table 4.3. Mean waiting time (in seconds) of states ...

Table 4.4. Mean time between errors ..
Table 4.5. Mean recurrence time of recovery ..

Table 4.6. Characteristics of software error/recovery model

Table 4.7. Characteristics of a multiple error ...
Table 5.1. Reward rates. ri . for error states ...

9

15

16

21

33

34

35

36

38

41

42

44

48

54

56

61

61

62

64

67

X

LIST OF F'IGURES

Figure 2.1. State-transition diagrams of CPU bound load ..

Figure 2.2 Statetransition diagrams of VO bound load ...
Figure 2.3. Flow chart of recovery processes ..
Figure 2.4. State-transition diagram of resourceusage/error/recovery model

Figure 2.5. Statetransition diagram for multiple errors (MULT)

Figure 2.6. Waiting and holding time densities ...

Figure 2.7. Error duration densities ...

Figure 4.1. Statetransition diagram for a multiple error ..

Figure 4.2. Reduced state-transition diagram of multiple errors

Figure 4.3. Flow of recovery ..

Figure 4.4. Software error/recovery model ...

Figure 4.5. Time to error density ...

Figure 4.6. Recovery time (error duration) densities ...
Figure 5.1. The conversion of non-exponential to a set of exponentials
Figure 5.2. The Markov conversion of State W, ...
Figure 5.3. The expected reward rate. E [X (t I] ..
Figure 5.4. The timeaveraged accumulated reward . E[Y(t)I/t

Figure 5.5. Distribution of accumulated reward until system failure

11

12

16

17

19

22

24

50

51

53

55

57

59

71

72

75

76

77

1
I
I
I
I
I
I
I
I
1
I
I
I
I
I
i
I
I

1

CHAPTER 1

INTRODUCTION

1.1. Thais Objectives

The development of realistic models to describe the error behavior of computer sys-

tems is a difficult problem. Although many researchers have addressed the modeling issue

and have signscantly advanced the state of the art, there is little or no validation of these

models with field data. It is, therefore, extremely valuable to model the error and recovery

process in a production system using real error data. Apart from providing useful informa-

tion on how errors occur. this process also provides insight into the interaction between

various system components. Additionally, it will be seen that i t also allows explicit model-

ing of the relatiowhip between resource usage and hardware and software errors. an area

that has yet to be fully explored.

In this research we build a statetransition model which describes the resource-

usagderror/recovery process of a computer system. This model is based on low-level error

and resource usage data collected on a production system. The data were collected on an

IBM 3081 system during its normal operation. Both the normal and erroneous behavior of

the system are modeled. The results. therefore, provide an understanding of the different

error and recovery processes and their relationship to various types of resource usage.

Hardware and software reliabilities and their interaction are also modeled. Results show

2

that the error and recovery process on our measured system is best described by a semi-

Markov process.

1.2. Related Research

The primary motivation for this research is that there has been no attempt to expli-

citly model the resourctusagdmr/recovery process based os rea! data. The only

research is that in [1.21. where the authors proposed the use of a double stochastic Poisson

process to model a cyclic load-error relationship. The model assumes that the instantaneous

error rate can be described by a cyclostationary Gaussian process (Le.. the workload has a

cyclic pattern). Thus only the external behavior has been modeled. Furthermore. only a

single workload variable (time spent in the kernel mode) was modeled.
I

Analytical models for hardware failure have been extensively investigated

[3,4.5.6.7,8]. Although the time for different components to fail is usually assumed to be

exponentially distributed. time-dependent failure rates and graceful degradation have been

considered along with performability issues. Repairability has been modeled by Trivedi. et.

al., [3.5,6,8], all of which assume constant repair times. A job/task flow based model is

described in [9]. Failure occurrence is assumed to be a linear function of the service

requests from a job/task flow. As shown in [lo], the assumption of linearity may result in

underestimating the effect of the workload, especially when the load is high.

Most software reliability models usually refer to the development, debugging and

testing phases of the software as in [ll, 121 and [13.14]. Few of these models have been

applied to the operational phase of the software. In [2] and 1151. software failures in an

operating environment are studied. Both studies found that at least 6070 of system failures

3

are software related. Another study [16] shows that d e t e c t e d softwarcrelated errors are

due to either specidcation errors. implementation errors, or logic errors.

There is little explicit study of hardwardsoftware reliability. The

hardwardsoftware interface is generally hard to model and experimental measurements

are not easy to obtain and analyze. In [15], software failures in the operating system.

which could be related to hardware problems. were analyzed and it was shown that errors

in the hardwadsoftwart kterfae are often fatai. In [17], a methodology for joint

hardwardsoftware model construction and model processing using Stochastic Petri Nets is

described.

With the exception of the software reliability growth models, which have been vali-

dated with real data, there are few. if any, models of software reliability in an operational

environment. Exceptions include the hardware and software model discussed in 1181 and a

measurement-based model of workload dependent failures discussed. in [101. Both, how-

ever, only describe the esternal behavior of the system and do not provide insight into com-

ponent level behavior.

It is therefore highly instructive to construct a detailed model based on low-level

error data from a production system. Toward this end we have constructed a joint

resourccusagderror/recovery model using error and resource usage data collected from an

IBM system. The model provides detailed information on system behavior under normal

and error conditions. Hardware and software failures of different severity are modeled.

Multiple errors and the effect of on-line recovery routines are also considered.

4

A methodology for model construction based on real error data and resource usage

information is described in Chapter 2. The model construction includes the resource usage

(workload) characterization. error and recovery characterization. and modeling the overall

system. For the workload characterization, we use a &atistical clustering method to

characterize the collected resource usages of the measured system from an n-tuple variable

of infinite points into a few number of sets. Thus. a state-trmsitbrr made! of icSOiirce

usages of the system is constructed based on these sets.

Different types of component errors and recovery procedures are also described in

detail and classified in Chapter 2. A two-level error data reduction scheme is employed to

identify individual error incidents and ensure that the analysis is not biased by error

records relating to the same problem. The interaction of hardware and software errors is

modeled in this chapter. The three models describing resource usage. error and recovery are

then combined to form an overall model. The conditional transition probabilities as well

as the sojourn times of states are estimated from real data. Results show that the

resource-usage/error/recovery process is a semi-iMarkov process.

In Chapter 3 we perform four ditrerent kinds of model analyses to show the charac-

teristics of the measured system. First, we use the model built in Chapter 2 to evaluate

key characteristics of the system, such as the state occupancy probability and the uncondi-

tional transition probability from one specified state to another. These measures provide us

with a very fair estimation of the model behavior. Second. we estimate the error probabil-

ity due to the workload from the model. The analysis shows that the error probabilities

appear to be not only a function of the resource usage, but are also related to the length of

the sojourn time in a resource usage state. Third. the model validation is performed by

5

1
I
I
I
I
I
1
I
I

comparing the results predicted from the model with the values estimated from the actual

observations. Finally, we perform an analysis to investigate the signscance of using a

semi-Markov process, as opposed to a Markov process, to model the measured system.

In Chapter 4 a measurement-based software reliability model is built. In addition to

describing the software error and recovery process in the measured system this model also

provides a quantidcation of software system error characteristics and the interaction

between different types of software errors.

A performability model based on real data is proposed in Chapter 5. A reward func-

tion, based on the service rate and the error rate in each state, is dehed in order to estimate

the performability of the m e k r e d system and to depict the cost of difFerent error types

and recovery procedures. The conversion of a semi-Markov model to its Markov version is

also demonstrated in this chapter. This conversion gives us the ability to use an existing

system performance estimator to estimate the performability of the measured system.

In Chapter 6 we provide a summary of this research and highlight some important

conclusions drawn from this work.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6

CHAPTER2

RESOUCE-USAGE/COVERY MODELING

21. Workbad Modeling

In this section we build a state-transition model to describe the variation in system

activity. It will later be shown that this approach allows an error to be considered as a

transition from normal activity. System activity is characterized by a number of resource

usage parameters. A statistical clustering technique is employed to reduce the potential

many to many transitions of the workload vector to a small number of states representa-

tive of those found in the data. The data for our studies came from an IBM 3081 system

running the MVS operating system. The system consists of dual processors with two

time-multiplexed channel sets. Together these two sets allow a maximum of 24 subchan-

nels to be simultaneously active in each VO cycle.

2.1.1. Resource Usage Characterization

The workload data was collected using the IBM MVS/370 system Resource Manage-

ment Facility (RMF) [19]. RMF is a flexible tool for measuring the performance of an IBM

system. It measures data in two ways: by exact count and by sampling. The exact count

method checks the appropriate system indicators at the beginning and the end of an interval

and calculates the difference. The sampling method checks the appropriate system indica-

tors at each cycle within an interval (e.g.. an interval may be one hour and a cycle may be

7

500 milliseconds). At the end of the interval the m a s of data collected at each cycle is

reduced to either minimum. maximum, and average values or to a percentage value. The

results presented here are based on three months of sampled RMF data, with a cycle time of

500 milliseconds and an interval of one hour.

Four different resource usage measures were selected to represent the workload of

three basic components of the computer hardware system.

CPU - fraction of the measured interval for which the CPU is executing instructions

CHB - fraction of the measured interval for which the channel was busy and the
CPU was in the wait state (this parameter is usually used to measure the degree
of contention in our system)

SI0 - number of successful Start VO and Resume 110 instructions issued to the
channel

DASD - number of requests serviced on the direct access storage devices

Although several other measures were available. we decided to use only the measures listed

above so as to keep the model trackable. The methodology presented here is easily extended

to incorporate other measures.

21.2 Workload Clustering

At any interval of time the measured workload is represented by a point in 4-

dimensional space, (CPU, CHB. SIO, DASD). Cluster analysis is used to divide the work-

load into similar classes according to a predefined criterion.' This allows us to concisely

describe the dynamics of system behavior and extract a structure that already exists in the

'Potentially, we can have an uncountably 1- numba of points in the workload space. Intuitively, only a
countable number of combinations of four musures do in fact occur. Further, it is seen that they usually occur in
clusters.

I
I
E
I
I
U

1
E
I
I
I
I
I
1
I
ff
I
I

i

8

workload data.* Each cluster (dehed by its centroid) is then used to depict a system state

and a state-transition diagram (consisting of inter-cluster transition probabilities and clus-

ter sojourn times) is developed.

A k-means clustering algorithm 121.221 was used for cluster analysis. Briefly, the

algorithm partitions an N-dimensional population into k sets on the basis of a'sample. It

starts with k groups each of which consists of a single random point. Each new point is

added t~ +Ae 5 ~ v ~ p with '&a closest centroid. After a point is added to a group, the mean of

that group is adjusted in order to take the new point into account. This process is repeated

until the changes in the cluster means become negligibly small. Thus at each stage the k-

means are. in fact. the means of the groups they represent. Therefore. k non-empty clus-

ters. C,.C ,..... C, , are sought such that the sum of the squares of the Euclidean distances of

the cluster members from their centroids is minimized, Le..

k

CI 1xi-zj 11, - minimum
j-1 i

where xi d Ci and Zj is the centroid of cluster Ci .

Two types of workload clusters were formed. In the first case CPU and CHB were

selected to be the workload variables. This combination was found to best describe the

CPU-bound load (nearly 6Wo of the observations have a CPU usage greater than 0.72). In

the second case the clusters were formed considering SI0 and DASD as workload variables.

This combination was found to best describe the I/O workload. Table 2.1 shows the results

for these two cases.

An examination of Table 2.1 also shows the dynamics of the measured system

behavior. We see in Table 2.1(a) that about 362 of the time the CPU is highly loaded
~

' Similar clustering techniques are also used for workload characterization in [2OL

9

Cluster
id

Wl
w2

w4

WS
w6

w7

Wi3

W,

Table 2.1. Characteristics of workload clusters

% of Mean Mean Stddev
obs OfcPU O f c H B O f c P U

7.44 0.0981 0.1072 0.0462
0.50 0.1 126 0.5525 0.0433
2.73 0.1547 0.2801 Q.3647
12.41 0.3105 0.1637 0.0550
0.74 0.3639 0.3819 0.0365
17.12 0.5416 0.1287 0.0560
22.58 0.7207 0.0848 0.0576
36.48 0.9612 0.0168 0.0362

~ Stddew

0.0669
0.0755
0.0459
0.1923
0.05 11
0.0301
0.0143

R2 of CHB - 0.8095
overall R2 = 0.9604

Cluster
id

% of
O b S

8.89
36.05
1.48
1.73
42.72
0.49
7.9
0.74

(b) I/O workload

of Mean SI0 I of Mean D U D

16.80
41.59
44.37
60.07
67.34
87.30
96.20
141.10

0.95
2.99
20.62
38.84
5.19
31.19
6.02
10.10

Std dev Std dev 1 of SI0 I of DASD 1
6.80
7.51
8.55
6.77
7.92
3.87
8.73
10.28

1.30
1.92
4.18
8.42
3.72
9.84
3.34
8.50

R2 of SI0 - 0.8861
RZ of DASD = 0.7176
OV& R2 = 0.8751

10

(0.96) and almost 76% of the time the CPU load is above 0.5. Since the measured system is

a two-processor machine. we may say that 76% of the time at least one of the processors is

busy. Note that, with increasing CPU usage. CHB (CPU wait and channel busy) decreases.

This indicates that resource contention is not a problem in our measured system. In Table

2.l(b) (the YO load), both clusters U, and U, have a very close channel start VO rate (SIO)

but the disk service rate (DUD) of U, is as much as 10 times that of U,. This indicates

that some L’O req-wstt result in a burst of data while the others only in a few words. A

burst transfer however occurred only 4% of the time (U, + U, + U6). This result may be

due to the fact that our measurements were made during work hours, but VO-bound jobs

are normally executed during off-work hours.

2.13. Resource Usage Model

State-transition diagrams of these two different types of workload clusters are shown

in Figure 2.1 and Figure 2.2. The transition probabilities from state i to state j , piJ , are

estimated from the measured data using:

observed number of transitions from state i to state j

observed number of transitions from state i
(2.1.1) -

P i j -

These two figure provide us with not only the details of workload dynamics but also the

interactions among clusters. Figure 2.1 shows that once the mu load reached 0.5 (w6). the

transition of the greatest probability was to its next higher load (W,) and the transition to

its next lower load (W,,) occurred with the second greatest probability. This can be seen

in states w6, w,, and W,. However, when the CPU load is low (i.e.. less than 0.5). the

change to a higher load is much faster. For example. with 0.333 probability the CPU load

changed from W, to W,, and 0.424 probability from W,, to W,. - -- I - ._

Figure 2.1. State-transition diagrams of CPU bound load

12

0.189

u6.7; - - y 030 f

0.15 J

- J

0.5

0.324 0.08 1

Figure 2.2 Statetransition diagrams of VO bound load

Figure 2.2 shows the transitions among various VO loads. This figure conlirms our

previous observation that most often the I/O workload fluctuates back and forth between

two moderate levels. U2 and Us (0.69 and 0.56) and that there are occasional requests for

burst VO (0.025 from U2 and 0.012 from Us to U3,&

13

2.2 ErrorModeling

In this section the collection and characterization of errors is discussed. A state-

transition diagram to describe Merent error States is developed. The measured system

incorporates built-in error detection facilities. and many components also provide for

recovery through retry or redundancy. The error and recovery information is logged into a

permanent data set called LOGREC [23]. For each error, whether recoverable or not, the

operating system creates a the-stamped record describing the error and providing relevant

information on the state of the machine. In each record there are a number of bits describ-

ing the type of error, its severity, and the result of hardware and software attempts to

recover from the problem. From this data six different types of errors were collected :

(1) CPU-related errors ,

(2) Temporary channel errors

(3) Temporary (soft) disk errors

(4) Temporary (hard) disk errors

(5) Permanent disk errors

(6) Software errors

- those that af€ect the normal operation of the CPU;
the errors may originate in the CPU itself, in the
main memory, or in a channel.

-those that are recovered by channel retry and do not
result in the termination of the channel control pro-
gram.

- those VO errors that are recovered by correcting the
data or by retrying the hardware instruction.

- those I/O errors that are recovered by software
instruction retry or by a functional recovery
routinds).

- those VO errors that are not correctable and can not
be recovered by retrying the operation. and

- software incidents that are due to invalid supervi-
sor calls, program checks and other software excep-
tion conditions.

8
1
I
I
I
8
8
I
8
I
i
B
I
1
1
I
I
I
I

14

221. ErrorClumring

Due to the manner in which errors are detected and reported in a computer system, it

is possible that a single fault may manifest itself as more than one error, depending on the

activity at the time of the error. The different manifestations may not all be identical 1241.

The system recovery usually treats these errors as isolated incidents. In order to address

this problem and to ensure that the analysis is not biased by error records relating to the

same problem, two levels of data reductbn were &armed.

First. a coalescing algorithm described in [lo] was used to analyze the data and merge

observations which occur in rapid succession and relate to the same problem. Next. a tech-

nique described in [24] to automatically group records most likely to have a common cause.

was used (See Appendix A for the details)? By using these two methods. we classified

errors into five different classes. These classes are called error events since they may con-

tain more than one error and are defined as follows.

CPU : that caused errors to be logged as (XU-related errors

C” : that caused errors to be logged as channel errors

SWE : that caused errors to be logged as software errors

DASD : that caused errors to be logged as direct access storage device errors

MULT : that caused errors affecting more than one type of component

Table 2.2 lists the frequencies of dzerent types of errors. In this table we found that

about 80% of errors are disk and software errors. We also note that about 17% of the errors

are classified as multiple errors (MULT). A MSJLT error is mostly due to a single cause but

the fault has non-identical manifestations provoked by dserent types of system activity.

’Although this second reduction is not asential to this work, it allows us to notice several multiple errors
which otherwise would not have been noticed

15

CHAN
MULT
SWE

Since the manifestations are non-identical, recovery may be complex and hence imposes

considerable overhead on the system. It should be noted that such an error event (17% of

our data) has not been modeled before.

119
924
1923

2.3. Recov- Modeling

.. ..+.r When an error is detected in the measured system. an appropriate tectave,ry udA& b

invoked depending on the severity of the error. The recovery procedures were divided into

four categories in increasing order of recovery cost. The recovery cost was measured in

terms of the system overhead required to handle an error. The lowest level (hardware

recovery). involves the use of an error correction code (ECC) or hardware instruction retry

and has minimal overhead. If hardware recovery is not possible (or unsuccessful). the next

level, Le.. software controlled recovery, is invoked. This could be simple, e.g.. terminating

the current program or task in control, or complex, e.g.. invoking a specially designed

recovery routine(s) to handle the problem. The third level of recovery (ALT) involves

transferring the tasks to a functioning processor(s) when one of the processors experiences

Table 2.2. Frequency of errors

I Tspe of error 11 Frequency I Percent I
CPU 2

~~~ ~ 

0.04 
2.23 
17.33 
36.07 
44.34 1 1 1  100.00 



I 
B 
I 
-1 
I 

Recovery Procedure 

m 
SWR 
ALT 
OFFL 

16 

Percent 

73.35 
26.56 
0.02 
0.07 

an un-recoverable error. If no on-line recovery is possible. the system is brought down for 

off-line repair. Figure 2.3 shows a flow chart of the recovery process. Table 2.3 lists the 

distribution of recovery levels. From Table 2.3 we note that about 73% of errors were 

CPU. CHAN. D successful 

successful s - 

faihed 

@- successful 

Figure 2.3. Flow chart of recovery processes 

Table 2.3. Percentage distribution of recovery procedures 



I 
I 
I 
I 
I 
1 
I 
I 

17 

successfully handled through hardware recovery and most of the others were recovered 

from by use of the software recovery procedure. 

2.4. ResourceUsage/Error/ReError/Becovery Model 

In this section we combine the separate workload, error and recovery models. 

developed so far, into a single model shown in Figure 2.4. A null state W, is added tn 

W W 

to good 
workload 

states 

Figure 2.4. State-transition diagram of resource-usagderrodrecovery model 



I 
I 
1 
I 
I 
I 
I 
1 
I 
I 
1 
I 
1 
I 
8 
I 
I 
I 
I 

18 

represent the state during the non-measured period although it is not shown in Figure 2.4. 

The transition probabilities among states are estimated from the measured data using Equa- 

tion 2.1.1. Notice that. unlike other models this describes both the normal and erroneous 

behavior of the system. The model has three dif€erent classes of states: normal operation 

states (S,). error states (S,). and recovery states (SR ). Note that the normal state has two 

dif€erent types of transitions: the first. to other normal states and the second, to error 

states. 

Under normal conditions. the system makes transitions from one workload state to 

another. The occurrence of an error results in a transition to one of the error states. The 

system then goes into one or more recovery modes after which, with a high probability, it 

returns to one of the "good" workload states. The state-transition diagram of Figure 2.4 

shows that nearly 98.3% of the hardware recovery requests and 99.7% of the software 

recovery requests are successful. Thus the error detection, fault isolation and on-line 

recovery mechanism allow the measured system to handle an error efficiently and 

effectively. In only less than 1% of the cases is the system not able to recover. 

Figure 2.5 shows the state-transition diagram of a MULT error (a MULT event), i.e.. 

given that a multiple error has occurred. The model shows that disk and software errors 

are strongly correlated in multiple errors. From the diagram, it is seen that in about 65% of 

the cases a multiple Mor starts as a software error (SWE) and in 32% of the cases it starts 

as a disk error (DASD). Given that a disk error has occurred there is nearly a 30% chance 

that a software error will follow. It  is also interesting to note that there is a 64% chance 

that one software error will be followed by another different software error. 



I 
I 
I 
I 
I 

! 
I 
I 
I 
1 
I 
I 
I 
1 
I 
l 
l 
I 

I 
I 

19 

-32 

.29 

Figure 2.5. State-transition diagram for multiple errors (MULT) 

2.4.1. Waiting and Holding Time Distributioxm 

We used the state-transition diagram to show the relationship among the workload, 

error, and recovery processes in the measured system. We also showed the interactions 

among the errors. In this subsection we will present the characteristics of the measured 

system in terms of the state waiting and holding times. 



I 
I 
'I 
iI 
I 
I 
D 
I 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
I 

20 

The waiting time for state i is the time that the process spends in state i before mak- 

ing a transition. The holding time for a transition from state i to state 1 is the time that 

the process spends in state i before making a transition to state j [25]. Table 2.4 shows the 

mean waiting times of both the workload and error states. It is well-known that the mean 

and standard deviation of an exponential distribution are the same. Thus an examination of 

the mean and standard deviation of the waiting times in Table 2.4 appears to indicate that 

2.4(c) which refers to the error states. 

Figure 2.6 shows the densities of waiting and holding times for one of the CPU load 

states. W, (see Appendix B for all states). Figure 2.6(a) shows the waiting time for W,. 

and Figure 2.6(b) and 2.6(c) represent the holding times from state W, to DASD and SWE 

error states. These densities are fitted to phase-type exponential density functions [261. 

n 

f ( t )  = aigi(t) * 

i =1 
n 

where ai bo. c u i  = 1. and n is the number of phases. The g i ( t )  function can be a simple 
i =l 

exponential, a multi-stage hyperexponential. or  a multi-state hypoexponential density 

function. The definitions of these three types of exponential functions are listed below. 

(1) Exponential: g o )  = Ae-xL. 

-Al t 
(2) Hyperexponential: g ( t )  = xcriXie , where X i  >0, ai 20. and Cati = 1. 

i =I i-1 

r 
-A t I (3) Hypoexponential: g ( t ) =  Cu iX ie  , where X i > O .  if i Z j .  and 

i =l 

A, 

i # j  



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

State 

Wl 
w2 
w3 
W, 
w5 
W, 
W, 
W, 

I 
1 
I 

# of Meall 
obs waitingtime 

53 1263.71 
2 289.65 
20 698.79 
130 1203.05 
11 613.74 
147 1380.86 
268 1071.31 
266 1612.72 

Table 2.4 Mean waiting time (in seconds) of states 

(a). CPU bound workload States 

# of 
State obs 

Mean Standard Stderror 
waiting time deviation of mean 

1384.20 
1.19 

913.30 
1130.28 
421.73 
1588.76 
1004.46 
2576.35 

State 

CHAN 
SWE 

DASD 
MULT 

190,13 
0.84 

204.22 
99.13 
127.16 
131.04 
61.36 
157.97 

# of Mean Standard 
obs waitingtime deviation 

13 5.08 18.31 
201 41.35 103.35 
401 120.86 223.89 
77 293.28 262.84 

(b). VO workload states 

86 

1221.75 
1453.19 
1437.15 
1137.41 
1243.63 
1696.85 
937.45 
387.74 

1475.70 
1530.75 
1452.86 
616.67 
1550.49 
1540.19 
1127.57 
176.96 

(c). Error states 

219.98 
86.11 
419.40 
145.39 
75.66 
770.10 
121.59 L 58.99 

Std error 
of mean 

5.08 
7.29 
11.18 
29.95 



22 

# 1 

0.0 
0 20 40 60 80 100 120 140 

Duration (minutes) 

(a) Waiting time density of state W, (CPU - 0.96) 

Duration (minutes) 

(b) Holding time density from state W, to state DASD 

Duration (minutes) 

(c> Holding time density from state W, to state SWE 

Figure 2.6. Waiting and holding time densities 



23 

Thus the graphs in figure 2.5 were fitted to the following functions (tested by using the 

Kolmogorov-Smirnov test [26] at the 0.01 significance level). 

-0.0002102t (1). waiting time : f ( t )  = 0.000146e -''oo2t + 0.000939e -0*oo103 + 0.000033e 

1 4.000937t -0.00659k (2). to a DASD error : f ( t )  = 0.00094e4"m + 0.0008355(e - e  

1 -0.000716 -0.004688t (3). to a SWE error : f ( t )  = 0.00085e-0'00k + 0.000701(e - e  
- .  -I -_ - - - -  

2.4.2. Recovery Distributions 

In our data, the selection of the destinations from any state of S, was found to be 

independent of the holding time distkbution. Further, for our system the time taken for 

each type of recovery can reasonably be considered constant. The overall recovery time. 

i.e.. the duration of an error event (or the holding time in an error state). however was not 

constant since an error event may involve more than one recovery attempt. This time is 

- ._ 

computed as the time difference between the first detected error and the last detected- error- .- - 

caused by the Same event. The duration of an error event can be used to measure the 

effectiveness of recovery from this event and also the severity of error. Figure 2.7 shows 

examples of error duration densities for three dserent  types of errors. Again, the follow- 

ing phasetype exponential densities were fitted to the graphs shown in Figure 2.7 (tested- at- - 

the 0.01 significance level). 

4.014562t + 0.007e-0"U + 0.008635e 4 . U t  (1) DASD: f ( t )  - 0.0375e 

-0.0021377t + 0.0001861e 

4.003607st + 0.0002704e 4.0445181 (2) SWE : f ( t )  - 0.041181e 



0.0 
0 2 4 6 8 10 12 14 

Duration (minutes) 

(a) DASD error duration density 

0 2 4 6 8 10 12 14 

Duration (minutes) 

(b) SWE error duration density 

0 2 4 6 8 10 12 14 16 

Duration (minutes) 

(c) MULT error duration density 

Figure 2.7. Error duration densities 

24 



25 

1 -0.003817C -0.0301092r (3) MULT: f ( t )  = 0.004371(e - e  

I 25.  Summary 

In summary. we have developed a state-transition model which describes the normal 1 

-a. - 

and error behavior of the system. Some key characteristics of the model are: 

( 1 ) 

(2) error/recovery is explicitly described. 

workload dynamics are explicitly described, 

-. . 

_. 

(3) waiting times in some workload and in most error states can not be modeled as. sim- 
ple exponentials. and 

(4) the holding times from a given workload state to various error states are dependent 
on the destinations. 

_ _  . -  

Thus. the resource-usage/error/recovery process is modeled as a complex irreducible semi- 

Markov process with the state OFFL as recurrent, making the overall model ergodic. 

Furthermore, the process is not an independent semi-Markov process since the waiting and 

holding time distributions are distinct for some states. 

I 
- _ _ _ _  8 

_. .-. 



26 

MODEL A.NALYSE 

Phw + h t  WI have ari overall modei. we show the usage of this model to predict key 

system characteristics. The mean time between different types of errors is evaluated along 

with model characteristics such as the occupancy probabilities of key error and workload 

states. Since the normal state transitions are also available, we can explicitly examine those 

states which are crucial from a error viewpoint. In order to evaluate the model behavior, 

the model parameters, however. have to be defined and then the derivations of the measures 

can be carried out. Thus in the next section we provide the definitions of the model parame- 

ters and the derivations of some important measures. 

3.1. Model Parameters 

From Chapter 2 we know that the measured system is best modeled as a semi-iMarkov 

process. Assume that A4 is an n-state semi-Markov model and given a stochastic transition 
n 

probability matrix P = biJ 1, p i j  >O. i=1.2 .... A.  jz1.2 .... n, z p i J = l ,  and a holding time 
j =1 

density function matrix H (t) = hjJ ( t )  , t B (0,eo). the mean holding time of the process I 1  
staying in state i before making transition to state j , Ti , ,  is 



0 

TiJ = f t hi,(t)dt . 
t d )  

27 

(3.1.1) 

We mentioned that in Section 2.4.1 the waiting time for state i is the time that the process 

spends in state i before making a transition. Thus. a waiting time is merely a holding time 

that is unconditional on the destination state. Hence the mean waiting time Ti is related to 

the mean holding time TiJ by 

n 

Ti = C P i j T i j  . 
i =1 

(3.1.2) 

Suppose that a process has been operating unobserved a long time and given that the 

process is now making a transition, the probability that the transition is to state j ,  vi, 

must satisfy n simultaneous equations 

n 

ITi = zvipij . 
i -1 

(3.1.3) 

W e  note that these n equations are linearly dependent. This linear dependency can be easily 

shown by summing these n equations, which results in 1 - 1. Therefore no unique solution 

for vj can be obtained from just by solving the equations (3.1.3). Since we know that the 

probabilities that the transition to all states have to sum to one. Le.. 

n 

p i = l .  
i = l  

(3.1.4) 

Then we can use Equation 3.1.3 in conjunction with Equation 3.1.4 to provide an unique 

solution for the steady state transition probability. After we substitute Equation 3.1.4 into 

the left hand side of Equation 3.1.3, we have 



28 

(3.1.5) 

The unique solution for ?ri can be obtained by solving n linear equations of (3.1.5). The 

matrix form of the solution is 

7r = 0 [u - I  + P]" , (3.1.6) 

where w, 0, U and I are: 

(1) 

(2) 

(3) 

(4) 

After deriving the steady state probability (also called limiting state probability), the pro- 

bability of a state being occupied by the process and the probability of the process entering 

a specified state can be obtained accordingly. 

7r = (TI. 7r2 ..... 7rn>. 

0 is an unit row vector, i.e.. all elements are one, 

U is an unit matrix. and 

I is an identity matrix. 

The steady state occupancy probability of state j ,  denoted as O j ,  is the probability 

that the process occupies state j when the system reaches a stable stage. and is evaluated as 

[25]: 

7rj T j  
Qj = QiJ = - 

T 
(3.1.7) 

n 

where 7 = 7ri Ti .  
i ~1 

We are sometimes interested not only in the probability that the process will occupy a 

state at some time in the future but also in the probability that the process will enter a 



29 

state at some particular future the. Thus, the probability that the process is just entering 

state j a t  some time instant after the system is in the steady state, ej , is just the state occu- 

pancy probability 'Dj divided by its mean waiting time Tj  [25 ]  

After substituting the result of Epatioc 3.1.7 k t c  Qaation 3.1.8 we have 

(3.1.8) 

(3.1.9) 

In a semi-Markov process - as in every life - an important question is "How long 

does it take to get from here to there?". Asmme that the time it takes to reach state j for 

the first time if the system is in state i at time zero is e i J ,  then f i j  (t 1, the probability that 

O i j  = t , is defined as [25]: 

The process can make transitions to other states before it first reaches state j at time t . or it 

may stay in state i and then make a direct transition to state 1 at time t . The l irst term of 

the right hand side of Equation 3.1.10 computes the probability of being in state i for any 

U€[O. t )  and the probability of the process being in another state  t at the beginning time of 

t-u after the process is out of state i .  The second term computes the probability if the 

process makes a transition directly from state i to state j at time t .  Therefore, the time to 

move from state i to state j can be estimated as the mean first passage time for a process 

from state i to j , and it is evaluated as 



00 

30 

(3.1.11) 

Since the f i J  (t is a recursive function which is shown in Equation 3.1.10. the computation 

time increases exponentially as t increases. However, in statistical the mean of a random 

variable can be estimated as the first moment of its moment generating function. e.g.. the 

h t  derivative of its exponential transformation at  point zero. The exponential transfor- 

mation of a function g (t 1, denoted as g' (s ) is defined as 

OD 

So, the exponential transformation of f i J  (t  1, is 

OD 

0 

a D t  n 

(3.1.12) 

OD 

OD 

Therefore. the mean first passage time for a process from state i to j is 

(3.1.13) 



31 

d 
Since -h;J (s La is the first moment of holding time distribution, Le.. the mean holding 

ds 

time T i , ,  and 

the mean first passage time g,, can be derived as below. 

B y  Equation 3.1.2. Equation 3.1.14 can be written as : 

(3.1.14) 

However, the mean recurrence time 

entrance rate into state j , Le. 

is actually the reciprocal of the steady state 

1 

=i 

- GjJ  - - .  (3.1.16) 

Thus Equation 3.1.15 can be written as 



and its matrix form is 

e = K + p e  , 

where 0 [si ,j 1 and K = (TU) - E-' where T. U and E are : 

(1) 

(2) 

(3) 

T is a diagonal matrix in which Tij = Ti, and TiJ = 0 otherwise. 

U is a unit matrix. Le.. all elements are one, and 

E is a diagonal matrix in which = e i ,  and EiJ  - 0 if i ;ti. 

Therefore. the mean first passage time matrix 0 can be derived as: 

K 
Q=- 

I - P  

3.2 Model Behavior 

32 

(3.1.17) 

(3.1.18) 

(3.1.19) 

In this section we use the measures that were defined previously to predict the key 

system characteristics for given stochastic transition probability matrix and holding time 

density function matrix which were estimated from the collected data. By solving the 

semi-Markov model we discover that the system makes a transition every 9 minutes and 8 

seconds. on average. In comparing this with the mean time between error (MTBE) listed in 

Table 3.1. it is clear that most often the transitions are from one workload state to another. 

Also note that the model indicates an MTBE of 4152 hours for CPU errors. This number is 

estimated by solving the model equations although there were no observations in the meas- 

ured period. (In examining the error data over a one year period we found two CPU 



33 

Type of Frequency 7 
Tabie 3.1. Mean time betwan errors 

CPU 
c” 
SWE 
DASD 
MULT 

~ 

0 0 
13 1.88 
201 29.05 
401 57.95 
77 11.12 

Mean time between 
errors (hour) 

26.88 
i.75 
0.87 
4.62 

errors.) The table also shows that a disk error occurs (as indicated in the model) almost 

every 52 minutes while a software error is detected every 1 hour and 45 minutes. Most of 

the disk errors (95%) are recovered through hardware recovery (Le.. hardware instruction 

retry or ECC correction). thus resulting in negligible overhead. This shows that on-line 

recovery is highly effective and provides a system with the ability to tolerate a fault and 

recover almost instantaneously. Thus. a highly reliable system is achieved. 

Table 3.2 iists the mean recurrence time for recovery routines. It shows that the on- 

line hardware recovery routine is invoked once every 0.62 hours, while a software recovery 

occurs every 2.57 hours. As mentioned earlier. hardware recovery involves hardware 

instruction retry or ECC correction. The maximum number of retries is predetermined. In 

the measured system each CPU has a 26-nanosecond machine cycle time and the disk seek 

time is about 25 milliseconds. We estimate a worst case hardware recovery cost of 0.5 

seconds. Le.. incorporating twenty I/O retries: ten through the original I/O path and another 

ten through an alternative YO path if t l ~  alternative is available. This. of course, overesti- 

mates the cost of hardware retry used for the CPU errors. However, the impact is very 



I 
I 
I 
1 
8 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1 

Typeof 
recovery 

Hardware 
Software 
Alternative 
Off-line 

34 

Meanrecurrence 
time (hour) 

0.62 
2.57 
- 

651.37 

Table 3.2. Mean recurrence time 

insignificant. This can be seen by comparing the estimated time for each hardware recovery 

with the recovery overhead. The comparison shows that the cost of hardware recovery is 

worth only 0.02% of total computation time. The mean recurrence time of the alternative 

recovery routine. is not estimated due to lack of data. Le.. this event seldom occurred. 

The model characteristics are summarized in Table 3.3. A dashed line in this table 

indicates a negligible value (less than 0.00001 probability). Table 3.3(a) shows the normal 

system behavior. Given that a transition has occurred the system CPU load is most likely to 

reach to W, or W,, i.e. 0.72 or above. This is also reflected in the entry and occupancy pro- 

babilities (e and (0). From the occupancy probabilities we see that almost 34% of the time 

the CPU load is as high as 0.96 (W& 39% of the time the CPU is moderately loaded (W, + 

W,). 

Table 3.3(b) shows the erroneous system behavior. The table indicates that about 30% 

of the transitions are to an error state (obtained by summing all the w's for all the error 

states). The DASD errors have the highest transition and entry probabilities. Since a transi- 

tion occurs every 9 minutes, we estimate that an error is detected, on the average. every 30 

minutes. Of course. over 98% of these errors caused negligible overhead. 

1 



35 

Measure 

4 0  

7T 

e 
s 

Table 3.3. Summary of model characteristics 

Workload state 

w, w, w2 w3 w, w, w6 w7 w 8  

0.0625 O.ooO8 0.0136 0.1258 0.0054 0.1639 0.2255 0.3398 
0.0257 0.0264 0.0014 0.0104 C.9559 O . m ?  C.s35 0. l l t j  0.i121 
0.00005 0.00005 - o.ooo02 0.0001 o.ooo01 0.00012 0.00021 0.00021 
5.71 5.62 10236 14.32 2.65 3138 2.33 1.32 1.32 

(a). CPU bound workload states 

Measure 

~ ~~ 

Error state Recovery state I CPU I CHAN SWE DASD MULT HWR SWR ALT OFFL 

(b). Error and recovery states 

Measure 

~ ~~ 

Error state Recovery state 

CPU CHAN SWE DASD MULT HWR SWR ALT OFFL 

4 0 O.oooO5 0.0066 0.0383 0.0179 
7r 0.00004 0.0055 0.0850 0.1692 0.0322 
e - O.OOOO1 0.00016 0.00032 0.00006 
B 4152 26.88 1.75 0.87 4.62 

I 

0.00022 O.OOO11 - - 
0.2379 0.0572 0.00004 0.00023 
0.00045 O.OOO11 - - 
0.62 2.57 4089.5 651.57 

~ 

An interesting characteristic of the multiple error events is also seen in Table 3.3(b). 

O.oooO5 0.0066 0.0383 0.0179 
7r 0.00004 0.0055 0.0850 0.1692 0.0322 

B e l  4152 - I 26.88 1.75 j 0.87 4.62 
O.OOOO1 0.00016 0.00032 0.00006 

Although. the transition probability (TI of a MULT error is lower than that for SWE 

(0.0322 vs. 0.0850). its occupancy probability (4) is higher (0.0179 vs. 0.0066). This is due 

to the fact that a MULT error has a longer sojourn time as compared to SWE error events 

(293 seconds vs. 41 seconds from Table 2.4). 

0.00022 O.OOO11 

0.2379 0.0572 I Oi0004 0.00023 
0.00045 O.OOO11 - - 
0.62 2.57 4089.5 651.57 

3.3. Effect of Workload 

In this section we compute the steady state probability of being in a specified work- 

load state and making a transition to a specified error state. Table 3.4 shows the 



36 

Error state 

CPU DASD MULT Total 

Prob Time Prob Time Prob Prob 

0.0786 1218.62 0.1296 1641.20 0.0285 0.2377 
0.0492 971.62 0.0990 757.09 0.0146 0.1661 
0.0471 1070.10 0.0489 722.26 0.0052 0.1027 

- 

. 

8 
I 
I 
I 
1 
I 

0.96 
0.72 
0.54 

probabilities of a error occurring at various load levels. In this table, "time" refers to the 

mean holding time in the specified workload state (e.g., CPU = 0.96) before the process 

making a transition to the selected state (e.g.. C"). An important relation between error 

probability and holding time in a workload state is seen in this table. The error probabili- 

ties appear to be not only a function of resource usage [lo], but also related to the length of 

the holding time in a resource usage state. For example. in Table 3.4(a) the probability of a 

668.18 0.0011 1609.71 
596.28 0.0032 1118.12 
1304.96 0.0010 1507.92 

Table 3.4. Holding time and transition probabilities to error states 

(a). CPU workload 

Time - in seconds. 

(b). VO workload 

Time - in seconds. 



37 

channel error is almost the same for two dif€erent CPU loads, 0.96 and 0.54. The mean 

holding time before a channel error occurs a t  the lower load is larger than that for the 

higher load, i.e. 1304.96 seconds vusus 668.18 seconds. When the holding times are simi- 

lar, however, (or increasing with increased usage). the error probabilities do increase with 

increasing resource usage. A similar phenomenon also exists for the I/O workload (see 

Table 3.4(b)). Thus. not only does a higher workload result in a higher error probability 

(for simiiar holding times). but the error probability also increases with increased holding 

time in a particular state. In other words, the error probability appears to be a function of 

the absolute amount of resource consumed in a given state. be it through increased work- 

load and/or increased holding times. An explanation for this apparent “wear out” 

phenomenon is not clear (since a large majority of our errors are transient). but it certainly 

calls into further question the validity of the frequently used constant error probability 

assumption often made in reliability modeling. 

3.4. Model Validation 

In Chapter 2 we had shown that the resource-usage/error/recovery process of the 

measured system is best modeled as a semi-Markov process. This is due to the fact that the 

waiting and holding time distributions of some states are not exponentials. In order to vali- 

date this semi-Markov assumption we will compare the occupancy probabilities of states 

predicted from the model with the values estimated from the collected data. 
- 

From Equation 3.1.7 we know that the state occupancy probability of the model, Q j .  

is defined as : 



c 

State 

4 

I 
I 
I 
I 
I 
1 
I 
I 
u 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 

W, w6 w7 W, DASD 

0.1258 0.1639 0.2255 0.3398 0.0383 

38 

~~~ 

E

However the actual occupancy probability. denoted as Gin can be estimated from the col-

0.0001 O.OOO5 0.0056 0.0054 0.0003
I

lected data by using the following equation.

..
9, = (3.4.1)

total time that system observed to be in state i

length of the observation period

Table 3.5 lists the comparison of these two measures, and 6. for the normal states with

significant occupancy probability (greater than 0.1 probability) and for one key error state

(DASD). From Table 3.5 we see that the predicted probabilities closely match those

€
estimated from the collected data (with the maximum of 0.025 tolerance. Le.. -1. This

6

Table 3.5. Comparison of occupancy probabilities for different states

I 6 11 0.1259 1 0.1634 I 0.2311 I 0.3452 I 0.0386 1

0.0008 0.0031 0.0242 0.0156 0.0078 l i l l I I I I I
0 : predicted occupancy probability
6 : actual occupancy probability
e: ttx?absoluteemx,1*-4

I
(I

u
1
E
E
I
I
1
t
I
E
'I
I
I
I
I

39

indicates that the semi-Markov model is a good model for the resource-

usagderror/recovery process of the measured system.

35. Markov Versus Semi-Markov

In this section we investigate the significance of using a semi-Markov model to

describe the overall resort..ct.~gd€~~~/r~overy process. It has been argued that since

errors only occur infrequently (Le.. X is small), a Markov model may well approximate the

real behavior. Thus. although the collected data shows that the semi-Markov process is a

better model for the resource-usage/error/recovery process. Le.. more closely approximates

the data from the measured system, it is reasonable to ask what deviations may occur if a

Markov process is assumed. In order to answer this question we use a Markov model to

describe the resource-usage/error/recovery process of the measured system and compare the

results with those obtained through the more realistic semi-Markov model.

Two measures, the unconditional transition probability to the next state (y) and the

first passage time (8). are used as the basis for comparison.

35.1. Unconditional transition probability (y)

-. _ _
Given a stochastic transition probability matrix kiJ] and a holding time density

function matrix , the unconditional transition probability from state i to statej , -

denoted as yiJ , in the semi-Markov process is given by [251:

(3.5.1)

40

where Ti, is the mean holding time before a transition occurs from state i to state j and 7

is the mean holding time of the process. Because the selection of the next state in the Mar-

kov process is not dependent on the holding time in the current state. Le. ;ViJ = Tik for

every j and k, so from Equation 3.1.2 we can have

Substitute this into Equation 3.5.1 we have

Further, from Equation 3.1.7 we have

(3.5.2)

(3.5.31

(3.5.4)

Table 3.6 compares the unconditional transition probability for semi-Markov and

Markov models. We see from Table 3.6(a) that when the CPU load is as high as 0.96. the

transition probabilities to the software and multiple errors are close for both models. This

is also true for channel error when the CPU load is 0.54. This is because for some destina-

tions j the holding time to the next state is the same as the waiting time of the current

state. Le.. Ti = Ti,. For the majority of the cases, however, the Markov and semi-Markov

models are not in agreement. Table 3.7 shows the ratios of the unconditional transition

probability yiJ estimated from both models, Markov versus semi-Markov. If the ratio is

less then 1 then the Markov process underestimates the transition probability, otherwise. it

overestimates. From this table we see that the Markov assumption sometimes overesti-

mates and sometimes underestimates the transition probability. In particular it overesti-

41

Model

semi-MarkOV

Markov

Table 3.6. Comparison of transition probabilities. yiJ
(Markov versus Semi-Markov)

Error

C" SWE DASD MULT

0 0.0022 0.0162 0.0046

0 0.0082 0.0350 0.0075

Load

41.59

0.96

- ~~ ~ ~ ~~~ ~~ ~~ ~~

Smi-Markov 0.0214 0.1198 0.0875 0.0234

Markov 0.0069 0.0839 0.1516 0.0264

(a). From CPU workload to error states

I I semi-Markov 11 0.0032 I 0.0492 I 0.0990 I 0.0146 I
I 0.72 I Markov 11 0.0058 1 0.0469 I 0.1086 I 0.0206 1
I I semi-Markov 11 0.0010 I 0.0471 I 0.0489 I 0.0052 I
I 1 I I 0.54 I Markov I[0.0011 I 0.0429 0.0627 I 0.0099 1

(b). From VO workload to err0 states

Load

96.20 -
semi-Markov 11 0.1840 I 0.0987 I 0.0263 I 0.0049 1

167.34 I Markov /I 0.0068 I 0.0987 I 0.1955 1 0.0352 I

42

+

Error

SWE DASD MULT

0.996 1.316 0.976
0.953 1.097 1.411
0.911 1.282 1.904

3.727 2.161 1.531
1.0 7.446 7.184
0.700 1.733 1.128

Table 3.7. Ratio of yiJ (Markov/semi-Markov)

..

Workload ll

0.96 2.273
CPU 0.72 1.818

0.54 1.100

96.20 -

mates the transition probabilities to most error states, regardless of the state. Overestima-

tion will lead to an unduly conservative reliability estimate and underestimation to an

overly optimistic estimate. Thus both are undesirable.

35.2. First Passage Time (Q)

We now examine the difference between the first passage times under the Markov and

the semi Markov assumptions. The first passage time distribution can be used to estimate

the MTBE and its variance.
~

The mean fitst passage time from state i to state j , eiJ in a semi-Markov process is

given in Section 3.1 as : ._ -

1 I - if i - j
-

(3.5.5)

43

zPiJ - '

From this equation. we notice that the mean first passage time depends on only the mean

holding time and the conditional transition probability of the current state. Clearly, if the

first moment of the first passage time to the error state (e.g., the MTBE) is the only main

concern, the Markov process should be able to provide adequate information. If the distri-

r t j
(3.5.6)

n

7 -2 i + cpi , (27 i ,8rJ + iF r j) otherwise

bution (or the higher moments) of the first passage time is of interest. the Markov model

may be inadequate. particularly if the variance of the first passage time is large. This can -

be seen clearly from the following equation [25].

This equation indicates that the second moment of the first passage time is a function of the

second moment of the state waiting time. as well as the mean holding time to the nest state.

Since the mean and the standard deviation ((TI of an exponential distribution are the

same, and the second moment of an exponential distribution is only a function of its mean.

i.e. EIXZl = 2*E[XI2. Thus, a Markov assumption may under- or over-estimate the second

moment. E[X2]. if u#sEEX].

Table 3.8 shows the ratio of giJ (Markov/semi-Markov) for transitions from a few

selected workload states to the error states. From Table 3.8. we see that the Markov

assumption frequently underestimates the second moment of the first passage time (to the

error state). The underestimation can be as much as 3Wo. However, it overestimates the

variation of fim passage time among dif€erent resource usage states. although this is not

44

1
I
a

Table 3.8. Ratio of 3 (Markov/semi-Markov)

World

CPU

DASD

~~~ 

MULT 

0.939 
0.972 
0.953 

0.991 
0.972 
0.963 

- 

shown in the table. 

353. Summary 

In summary, our measurements show that using a Markov model frequently overesti- 

mates the unconditional transition probabilities and underestimates the variance of the first 

passage times to the error states. The overestimation. of course, will lead to an unduly con- 

servative reliability prediction. It can be argued that such gross overestimation (as seen in 

some cases here) is undesirable and may not be cost beneficial. The underestimation is no 

doubt a serious problem which may lead to unduly optimistic reliability prediction. 



45 

4.1. Introduction 

The problem of modeling software reliability during the development, debugging and 

validation phases of the software cycle is a well researched area. However, there are few 

studies which model software error and recovery processes in a fully operational produc- 

tion environment. The difficulties are partly due to the fact that, unlike computer 

hardware, which is reasonably modularized, each software system can have its own pecu- 

liar characteristics. At this stage, it is extremely valuable to develop a comprehensive model 

quantifying the software error and recovery processes in a production system using real 

data. In addition to providing useful information on how and when errors occur in the real 

world, this process provides the quantscation of the interaction among dHerent types of 

software errors; an important result for developing analytical models. 

In this chapter. a state-transition model to describe the software error and recovery. 

processes in a complex operating system is described. Measurements were made on an MVS 

(Multiple Virtual Storage) system running on an IBM 3081 mainframe. Time-stamped low 

level error and recovery data from MVS. collected during the normal operation of the sys- 

tem, formed the basis for developing t h e  model. The semi-iMarkov model developed from 

the real data provides a quantification of the system error characteristics and also gives an 



46 

insight into the interaction between the various software error and recovery processes 

occurring during normal system operation. 

4.1.1. Related Besearch 

Most software reliability models usually refer to the development, debugging and 

testing phases of the software Ell. 12.13.141. Few of these models have been applied to the 

operational phase of the software. In 121 and [15]. software failures in an operating 

environment are studied. Both studies found that at least 60% of system failures were 

software related. There has been little explicit study of hardwareisoftware reliability. In 

[15], software failures related to hardware problems in the operating system are analyzed 

and it is shown that errors in the hardware/software interface are often fatal. In [271, a 

resource-usageheliability model was developed from real data and it was seen that about 

36% of detected errors (not necessarily system failures) were reiated to software problems. 

With the exception of software reliability growth models, which have been validated 

with real data, there are few, if any, models of software reliability in an operational 

environment. Exceptions are the hardware and software model discussed in 1181 and a 

measurement-based model of workload dependent failures discussed in [lo]. However, 

these only describe the external behavior of the system and do not provide insight into 

component-level behavior. 

It is therefore highly instructive to develop a detailed model based on low-level error 

data from a production system. In the following sections. we construct a error/recovery 

model for the M V S  operating system. Software problems of differing severity are modeled. 

Multiple errors are also considered and and the effect of on-lint recovery routines is taken 

into account. 



47 

4.2 Error Characterization 

In this section the collection and characterization of the iftware error and error 

recovery data are discussed. A statetransition diagram is developed to describe the 

different error and recovery states. This allows us to determine the serverity of errors and 

effectiveness of recovery. 

Error data based on different causes were collected. Information on sooftware e r e t s  b 

automatically logged by an operating system module. Details of the logging mechanism are 

described in [23]. In order to ensure that the analysis is not biased by error records relating 

to the same problem, two levels of data reduction which were described in Chapter 3 were 

performed. As a result. the software errors were classified into eight classes. These eight 

classes are called error events. since they may contain more than one error, and are defined 

as follows. 

(1) Control (CTRL) 

(2) Deadlocks (DLCK) 

- incidents indicating the invalid use of control state- 
ments and invalid supervisor calls 

- incidents indicating system or operator detected 
endless loop, endless wait state or violation of system 
or user-defined time limits 

(3) I/O and Data Management (YO) - incidents indicating problems occurred during VO 
management or during the creation and processing of 
data sets 

(4) Storage Management (SM) - incidents indicating errors in the storage 
allocatiodde-allocation process or in virtual memory 
mapping 

(5 )  Storage Exceptions (SEI - incidents indicating addressing of nonexistent or 
inaccessible memory locations 

(6) Programming Exceptions (PE) - incidents indicating program errors other than 
storage exceptions 



I 
I 

48 

- incidents indicating that problems occurred which 
do not fit the above categories 

(8) Multiple Errors (MULT) - incidents indicating more than one type of error 
listed above 

Table 4.1 lists the frequencies of different types of software error events defined 

above. The table shows that more than one half (52.5%) of software errors were VO and 

dztz mmzgtmeot m o r s  and another 11.4% of the errors were storage management errors. 

A signiscant percentage (17.4%) of errors were classified as multiple errors and are 

specifically modeled in the following subsection. 

4.2.1. Multiple Errors 

A multiple error most often is due to a single fault that has non-identical manifesta- 

tions provoked by different types of system activity. Since the manifestations are not 

Table 4.1. Frequency of software errors 

Typeof Errors ( 1  Fsquency 

Control 
Deadlock 
VO & Data Management 
Program Exception 
Storage Exception 
Storage Management 
0th- 
Multiple Error 

213 
23 

1448 
65 

149 
313 
66 

48 1 

Percent 

7.72 
0.84 

52.50 
2.43 
5.40 

11.35 
2.32 

17.44 

100.00 



49 

identical, recovery may be complex. Figure 4.1 shows the state-transition diagram of a 

multiple error developed from the data. The transition probability from state i to state j 

piJ . is estimated from the measured data using: 

observed number of transitions from state i to state j 

observed number of transitions from state i 
- 

Pi.j - 

This figure not only illustrates the possible interactions among different software errors but 

also provides detailed information on the occurrence of transitions. For example. if a pro- 

gram exception error (PE) occurs, there is about a 63% chance that a storage exception (SEI 

on error will follow. Further, there is more than a 50% chance that one storage error will 

be followed by another error of the same type (52% for storage management and also €or 

storage exception). Lf we only focus on those transitions with significant probabilities (Le.. 

higher than 0.1). the number of states in Figure 4.1 can be reduced to five. The state- 

transition diagram for these active states is illustrated in Figure 4.2. Notice that a cyclic 

path is formed by the VO and data management (YO) along with the two different types of 

exception states (program exception and storage exception). 

- 

4.2.2 Rccoverg Modeling 

Recovery in M V S  is designed as a means by which the system can prevent a total loss. 

Whenever a program is abnormally interrupted due to the detection of an error, the Super- 

visor gets control. If the problem is such that further processing could degrade the system 

or destroy data, the Supervisor gives control to the Recovery Termination Manager (RTM). 
- If a recovery routine is available for the problem program. RTM gives control to this-rou- - .  

. .. - - .  
tine before deciding to terminate the program. 



so 

Figure 4.1. Statetransition diagram for a multiple error 



\ 

51 

0.2536 

0.1108 1 f l  sl 0.2886 
S M  vo 05243 

.2304 0.1726 

0.1667 

1 o.1571 fi*4582 1 
\ 

Figure 4.2. Reduced s t a ~  1 :ami ion diagram of multig e errors 

I The purpose of a recovery routine is to free the resources kept by the failing program 

(if any). to locate the error, and to request either a continuation of the termination process 

or a retry. Recovery routines are generally provided to cover critical M V S  functions. It is 
I 



52 

1 
I 
I 
I 

however, the responsibility of the installation (or of the user) to write a recovery routine 

for other programs. 

More than one recovery routine can be specified for the same program: if the latest 

recovery routine asks for a termination of the program. the RTM can give control to 

another recovery (if provided). This process is called 'percolation.' The percolation process 

ends if either a routine issues a valid retry request or no more routines are available. In the 

latter casei the program and its related subtasks are terminated. If a valid retry is 

requested. a retry routine restores a valid status using the information supplied by the 

recovery routinds) and gives control to the program. In order for a retry to be valid. the 

system should verify that there is no risk of error-recurrence and that the retry address is 

properly specified. An error may have four possible effects. 

1) Retry - The system successfully recovered and returned control to the 
problem program. 

2) Task Termination - The program and its related subtasks are terminated, but the sys- 
tem is not af€ected. 

3) Job Termination - The job in control at the time of the error is aborted. 

4) System Damage - The job or task in control at the time of the error was critical for 
system continuation. Thus, jobitask termination resulted in system 
failure. 

1 
I 
1 
I 
I 

Figure 4.3 illustrates the steps in the recovery process. It is clear that recovery can be as 

simple as a retry or more complex, requiring several percolations before a retry. The prob- 

lem can also be such that no retry or percolation is possible. Table 4.2 shows the percentage 

for these different types of situations. For example, for storage management errors. approx- 

imately 8% of the cases resulted in a direct retry, 84% involved some percolation and over 



I 
I 
II 
I 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 

53 

Figure 4.3. Flow of recovery 



54 

Table 4.2. Percentages of recovery attempts for a software error 

Control 
Deadlock 
I/O & Data Managemcot 
Program Exception 
Storage Exception 
Storage Management 
Others 

78.38 
2.78 

93.49 
20.09 
28.09 

7.77 
14.89 

21.62 
97.22 
6.51 

79.91 
71.91 
83.73 
85.11 

0.0 
0.0 
0.0 
0.0 
0.0 
8.50 
0.0 

8% could not be percolated any further (Le. jobdtask termination). The table' shows that 

only in a small percentage of the cases was the problem un-recoverable (no-percolation). 

43. Software Reliabiliq Model 

43.1. Overall ErrorLRemvery Model 

In this section we combine the separate error and recovery models to construct a single 

overall model shown in Figure 4.4. Note that a state. Normal. represents the normal sys- 

tem operation. The results of the recovery process are classified into three diEerent states 

(resume op. task terrc and job term) to reflect the severity of errors. The model thus pro- 

vides a complete overview of software error and recovery from an error occurrence to its 

recovery. 



8 
0 
I 
1 
I 
I 
1 
I 
I 
B 
E 
I 
E 
I 
I 
I 
R 
I 
I 

Figure 4.4. Software emdrecovery model 



56 

%: of 
o h  

2757 
213 
23 

1448 
65 
149 
313 
66 
481 

4.3.2 Waiting Time Distributions 

Table 4.3 shows the characteristics of both normal and error states in terms of their 

waiting times. Note that the duration of a single error is generally in the range of 20-40 

seconds on the average. except f o r  deadlock and "others". The table also shows that the 

errors not classiiied are relatively insigmhmt since their duration is less than 2 seconds. 

Program exceptions take twice as long as control errors (42 seconds versus 21 seconds). 

This is possibly due to the extensive software involvement in recovering from program 

exceptions. Figure 4.5 shows the density of waiting time in the normal operation state. Le.. 

the density of the time to error. This density could not be fitted to a simple exponential. 

and because of the shape of this density we found that it was fitted to a multi-stage gamma 

Mean 
waiting time 

1046 1.33 
21.92 
4.72 
25.05 - 
42.23 
36.82 
33.40 
1.86 

175.59 

Table 4.3. Mean waiting time (in seconds) of states 

State 
- ~~~~ ~ 

Normal 
Control 
Deadlock 
I/O & Data Management 
Program Exception 
Storage Exception 
Storage Management 
Others 
Multiple Error 

Standard 
deviation 

32735.04 
84.21 
22.61 
77.62 
92.98 
79.59 
95.01 
12.98 
252.79 

Std Error 
of mean 

623.44 
5.77 
4.72 
2.04 
11.53 
6.52 
5.37 
1.60 
11.53 



57 

Probability 

0 100 200 300 400 

Duration (minutes) 

Figure 4.5. Time to error density 

density function better than to a phase-type exponentials a t  the same acceptable level. The 

multi-stage gamma density function f (t is defined as 

(4.3.1) 

n 

where ai BO, c u i = l ,  and n is the number of stages. The g ( t  : a. 5) is a gamma density 
i t 1  

function (with s the distance shifting from the origin). 

(4.3.2) 

where I%x) is a gamma function. Hence, the density in Figure 5 so obtained has five stages. 

given by 



58 

f(x)= 0.748 g ( x ;  2.1, -1) + 0.055 g ( x ;  0.5. 0) + 0.069 g ( x ;  3.5. 3) 

+ 0.030 g ( x ;  5.0. 8) + 0.098 g ( x :  5.0, 17). 

tested using the Kolmogorov-Smirnov test [26] at the 0.01 significance level. 

433. Recovery Time Distribution 

For the purposes of evaluating t h e  time for recovery, we assumtd that each recovery 

mode takes a constant amount of time. The overall recovery time. Le.. the duration of an 

error event (or the waiting time in an error state), however was not constant, since an error 

event can involve more than one recovery attempt or may require more than one recovery 

routine. The recovery time was then computed as the time difference between the h t  and 

the last detected error caused by the same event. The duration of an error event was used 

to measure the dectiveness of recovery from this event and also the severity of the error. 

Figure 4.6 shows the recovery time densities for three different types of errors: I/O 

and data management, storage management. and multiple errors. Note that none of these 

densities could be fitted by simple exponentials at an acceptable level of significance. Thus. 

they were fitted to phase-type exponential density functions [261. . 

n 

where ai 20. Coi  =l and R is the number of phases. The gi function can be a simple 
i=f 

exponential. a multi-stage hyperexponential. or a muti-stage hypoexponential density func- 

tion. These exponentials are defined in Section 2.4. The densities in Figure 4.6 were fitted 

to the following functions (tested using the Kolmogorov-Smirnov test at the 0.01 

significance level): 



I 
I 
1 

59 

1.0 I 

Prob. 

0.0 1 -.- 

0 2 4 6 8 lo  
Duration (minutes) 

(a). Density for YO and Data Management state 

Prob. 

Prob. 

t \  
0.0 

0 2 4 6 8 10 

Duration (minutes) 

(b). Density for Storage Management State 

c 

0.0 
0 2 4 6 8 10 

Duration (minutes) 

(c). Density for multiple error state 

Figure 4.6. Recovery time (error duration) densities 



60 

I 

-0.00395& + 0.000354e (1) vo: f ( t )  = 0.0782% * 

(2) S M  f ( t> = 0.1642e4* + 0.030424e + 0.0006634e , and 

-0m5866c + 0.002163e (3) MULT: f ( t>  = 0.078e + 0.002426e 

4.08594 

4.006586r -0.053294 

4.005szsr 4.4 

43.4. Summary 

In summary. the model developed explicitly quantifies the error and recovery process 

in the measured software. We note both the time to error and the recovery time distribu- 

tions in several key states cannot be modeled as simple exponentials. Hence the overall pro- 

cess is modeled as a semi-Markov process. Further, the semi-Llarkov process is irreducible 

with the resume operation (resume op) state. the job termination (job term) state, and the 

task termination (task term) state being recurrent. 

In the next sub-section we analyze the overall model to determine key software error 

characteristics. The mean time between different types of errors is evaluated along with 

model characteristics such as the occupancy probability of key error states. 

4.4. Model Analysis 

4.4.1. General Characteristics 

By solving the semi-Markov model. we discover that the measured software system 

made a transition. on the average, every 43 minutes and 22 seconds. Table 4.4 lists the 

mean time between dif€erent software errors (Le.. mean time between errors) and Table 4.5 

shows the mean recurrence time for recovery processes. By examining the mean recurrence 

time for VO and MULT errors from Table 4.4 and comparing them with the mean waiting 

times in Table 4.3. we find that although the VO errors occur about 3 times as often as the 



61 

Percent 
(%I 
7.72 
0.84 

52.50 
2.43 
5.40 

11.35 
2.32 

17.44 

Table 4.4. Mean time between errors 

MTBE 
(hour) 

37.83 
351.58 

5.56 
120.15 
54.08 
25.73 

125.84 
16.75 

Error 
state 

CrRL 
DLCK 
VO 
PE 
SE 
SM 
OTHR 
MULT 

Retry 
Percolation 
No-Percola tion 

Frequency 
count 

4.25 
8.55 

241.43 

213 
23 

1448 
65 

149 
3 13 
66 

48 1 

Table 4.5. Mean recurrence time of recovery 

Type of recovery 11 MTBR (hour) 

multiple errors. the system spends nearly 6 times longer in recovering from a multiple 

error (25 seconds for VO errors versus 175.6 seconds for multiple errors). This is because 

recovery from a multiple error involves several different types of recovery attempts. In 

addition, 63% of the multiple errors invoke percolation compared with the fact that 94% of 

the I/O errors recovered through retry (see Figure 4.4). 



62 

Measure 

7r 

a 

4.4.2. Model Probabilitiw 

Given the irreducible semi-Markov model of Figure 4.4, the following steady state 

probabilities were evaluated. The derivations of these measures are given in Section 3.1. 

~ - 
Normal Error state 

state CTRL DLCK 110 PE SE SM OTHR MULT 

0.2474 0.0191 0.0020 0.1299 0.0060 0.0134 0.0281 0.0057 0.0431 

0.9950 0.00016 - 0.00125 0.000098 0.000189 0.00036 - 0.002913 

(1) transition probability (7rj ) -.given that the process is now making a transition. 
the probability that the transition is to state j 

Measure 

7r 

8' 

(2) occupancy probability (aj ) - at any instant time the probability that the process 
occupies state j 

Recovery state Result 
Retry Percolation No-Percolation Resume op Task term Job term 

0.1704 0.0845 0.0030 0.1414 0.0712 0.0348 

4.25 8.55 241.43 5.11 10.16 20.74 

(3) entry probability ( e j )  - at any instant given that the process is entering a 
state. the probability that the process enters state j 

(4) mean recurrence time (Gj ) - mean recurrence time of state j 

The model characteristics are summarized in Table 4.6. A dashed line in this table 

Table 4.6. Characteristics of software errodrecovery model 



63 

indicates a negligible value (less than O.oooO1 probability). From the occupancy probabil- 

ity.@, of the normal state in Table 4.6(a). we see that in about 99.5% of time the software 

system is operating normally. Le.. only 0.5% of time the system detects software errors. 

This indicates that the reliability of the measured software system can be as high as 0.995. 

In Section 2.2 we know that about 35% of observed errors were software errors. Thus the 

effect on the overall system reliability due to the software errors is very significant. 

Th: %Ne a h  shows that. of ail possible transitions made, 24.73% are to an error state 

(obtained by summing all the a ' s  for all the error states) and another 25.79% are to a 

recovery state. Since it was seen earlier that a transition occurs every 43 minutes. we esti- 

mate that a software error is detected. on the average, every 3 hours. From Table 4.6(b). 

we notice that although an error is detected almost every 3 hours, a successful recovery 

(Le., results in resume operation). only occurs once every five hours, i.e., nearly 432 of the 

errors result in tasWjob termination. 

Multiple-error events formed a significant category on their own. Since this type of 

event involves several errors and result in considerable overhead, it is analyzed separately 

in the next section. 

I 4.43. character is ti^ of A Multiple Error 

In Section 4.2 we pointed out that about 17% of software errors were multiple errors. 

We also noticed that the multiple errors mostly consist of VO. storage. or program errors. 

A strong connection between program and storage exception was seen in the occurrence of a 

multiple error. Table 4.7 lists the characteristics for a multiple error and was obtained by 

solving the semi-Markov model described in Figure 4.1 with a zero holding time in the 

normal state (Le.. given a multiple error occurs). From Table 4.7 we see (from lr. 

._ _ _  _ -  - 

~- # 

I 
1 



Measure 

77 

0 

e 

8' 

- 
Normal 
state 

0.1767 

0 

0.00568 

0.0489 

- 

64 

Table 4.7. Characteristics of a multiple error 

Error state 
CMtL DLCK 110 PE SE SM o m  

0.0327 0.0048 0.1451 0.1473 0.2957 0.1360 0.0617 

0.0648 0.0130 0.3004 0.0837 0.2202 0.2717 0.0462 

0.00105 O.OO015 0.00466 0.00473 0.00950 0.00437 0.00198 

0.2647 1.8126 0.0596 0.0587 0.0292 0.0636 0.1401 

- in hour 

transition probability) that nearly 3wo of the transitions are made to the storage exception 

state when the process enters a multiple error mode. Once in a multiple error mode, a 

storage exception error occurs every 1 minute and 45 seconds (B = 0.0292 hours in Table 

4.7). while the average duration of multiple errors is about 2 minutes and 56 seconds (g  = 

0.0489 hours, the recurrence time of the normal state). Note that the average duration of a 

multiple error predicted here from the model is very close to the mean duration of a multi- 

ple error, 175.5 seconds obtained from real data, listed in Table 4.3. This provides a strong 

evidence that the semi-Markov process is a good model fo't our measured system due to its 

fairly accurate prediction. As soon as an entry into a multiple error is made. consecutive 

errors are detected almost every 31 seconds (by taking the reciprocal of the sum of all 

entry probabilities e in Table 4.7). This indicates that about 5 to 6 errors will be detected 

on average, once a multiple error occurs. i 

There are several interesting characteristics of multiple errors which can be derived 

from the model of Figure 4.1. For example. if we want to know the probability of a 

storage exception error given an YO error, we can evaluate it by the multi-step transition 



65 

I 
t 
I 
I 
I 

I 

probability to the SE state from the VO state. This turns out to be very small, only 

0.0076. However. we bnd that the probability of an I/O occurring given a SE occurs at any 

time instant. is as high as 0.668. This is partly due to the fact that for a semi-Markov pro- 

cess the unconditional transition probability at any time instant, yiJ  , is not only a function 

of conditional transition probability p i J  but a h  a function of mean holding time. This can 

be seen in Equation 2.5.1. 

45. Conclusion 

In this study, we have developed a semi-Markov model to descrihe the error and 

recovery processes in the MVS system. The model is based on real error data collected dur- 

ing normal system operation. The semi-Markov model developed provides a quantification 

of system error characteristics and the interaction between different types of errors. As an 

example. we provide a detailed model and analysis of multiple errors, which constitute 

approximately 17% of all software errors and result in considerable overhead. It is sug- 

gested that other systems be similarly analyzed and modeled so that a wide range of realis- 

tic models of software reliability in an operating environment are available. 



66 

if i e S N  U S E  
si t ei 

PERFORMABILITY MODEL 

A workioad/teWuiliry model is built based on real data. Given a stochastic transition 

probability matrix and a holding time density matrix, the system behavior such as the 

unconditional transition probability and state occupancy probability in the steady state can 

be estimated. However, the performability of the measured system is not yet addressed. 

Thus in this chapter we use the resource-usage/error/recovery model to estimate the per- 

formability of the system. Reward functions are used to depict the performance degrada- 

tion due to errors and also due to dserent types of recovery procedures. Toward this end, 

we define a reward rare for each state of the resource-usage/error/recovery model. 

5.1. Reward Function 

First, we propose the reward rate ri (per unit time) for each state i in our model as 

follow: 

(5.1.1) 

Ti  = l o  i f i  E & ,  

where. the si and e, are the sewice rate and the error rate in state i , respectively. Thus one 



67 

unit of reward is given for each unit of time when the process stays in the normal states 

S,. The penalty paid depends on the number of errors generated by an error event. With 

an increasing number of errors the penalty per unit time increases, and accordingly. the 

reward rate decreases. Zero reward is assigned to recovery states. This is due to the fact 

that during the recovery process the system does not contribute any useful work toward 

the system performance besides recovering from an error. Based on this proposal. reward 

rates for the error states are es th ted  md & a w ~  ia Tzble 5.1. We h o w  that from Tabie 

3.3(b) the transition probability to the DASD error is about as much as twice to the SWE 

error and Table 5.1 shows that the reward gained from the DASD state is also as much as 

twice from the SWE state. Thus we expect that the impact due to the DASD error on the 

performability is much higher than that due to the SWE error. In order to understand the 

effectiveness of various errors. first we show some important performability measures that 

can be derived from the model. 

Since the system can be in any state at any instant. so the reward rate of the system at 

time t , X ( t  >. is the reward rate of the state where the system is currently occupied. It is a 

random variable and denoted as 

Table 5.1. Reward rates, t i ,  for error states 

~ ~~ ~ ~ _ _ _ _  

f i 0.5708 0.273 .9946 0.2777 



X ( t  ) = ri I process is in state i at time t 

Therefore the expected reward rate at time t , E[X(t )I, can be evaluated as 

68 

(5.1.2) 

(5.1.3) 

where p i ( t>  is the probability of the process being in state i at time t .  The cumulative 

reward by time t . Y(t >, can be derived from 

Therefore. the expected cumulative reward at thpe t , E[Y(t 11. is given by [28]: 

(5.1.4) 

In order to solve for p i  (t and hence other measures, we convert the semi-Markov process 

into a Markov chain using the method of stages 126,291. The conversion of the semi- 

Markov model to the Markov model for  the measured system is described in section 5.2. 

Thus the state probability vector P ( t  = (....pi (t >....> can be computed by solving the set of 

differential equations of the form: 

d - P ( t )  = P(t)Q 
df 

where Q is transition rate matrix of the Markov chain [25]. 



69 

5.2 Semi-Markov to Markov Conversion 

As we know, the sojourn time distribution of states is the only difference between 

semi-Markov and Markov models. For a Markov model the sojourn time distributions of 

states must be exponentials. however. it can be any distribution for a semi-Markov model. 

Thus, to convert a semi-Markov to a Markov process, one must change the non-exponential 

distributions to exponentials. In this section, we show how to convert a state with non- 

expoaeiitid distriboution to a number of states in which each state is exponential. 

In Section 2.4 we fitted the state holding times of our resource-usage/error/recovery 

process to the phasetype exponentials. The phasetype exponential function f ( t )  can be 

expressed as 

n 

where ai > 0. C a i  = 1. and n is the number of phases. For each phase i , the gj (t can be a 
i =l 

simple exponential. a multi-stage hyperexponential. or a multi-stage hypoexponential. The 

definitions of these three types of functions are listed below. 

Exponential : EXP (A) 

Hyperexponential : Hyper (A 1,k2,...Ar 1 

r r 
-Att 

Hyper(X,.X 2.....Xr) = ai EXP(h, = C ai Xie , 
i l l  

r 

where ui >O. ui 30. and Cai = 1. 
irl 

i=l  



70 

Hypoexponential : Hypo (X1A 2,...& 

8 
I 

I 
I 
1 

By using the method of stages [26]. a hyperexponential distribution can be modeled as a set 

of parallel exponential stages and a hypoexponential distribution as a set of series exponen- 

tial stages. Figure S.l(a) and S.l(b) show the conversions of these two types. In Figure 

5.l(a) we note that each ai of hyperexponential function is converted to the probability to 

the associated state -having density EXP(X,). however this is not the case for the hypoex- 

ponential. From Figure S.l(b), we know that the Markov version of the hypoexponential is 

just a series connection of states in which each state has an simple exponential density func- 

tion and the probability from one state to another is one. As an example we know in sec- 

tion 2.3 that the holding time density from state W, to error state DASD is fitted by 

f ( t )  = 0.235 EXP(0.004) + 0.765 Hypo(0.00093.0.006595) , 

which is a combination of hyper and hypo exponentials. The Markov conversion of the 

state with Equation 5.2.1 holding time density is shown in Figure 5.2. Note that the state 

W, in Figure 5.2(a) is modeled as a three state Markov process. This is shown in the dotted 

area of Figure 5.2(b). 

53. Performability Anslysis 

After converting a semi-Markov process to a Markov process. analysis can be carried 

out on the resulting Markov reward model of the measured system using SHARPE (the 



71 

1 
I 

1 
f 

(a). Hyperexponential distribution as a set of parallel exponential stages 

(b). Hypoexponential distribution as a set of series exponential stages 

Figure 5.1. The conversion of non-exponential to a set of exponentials 



72 

0.5455 - c 

(a). Semi-Markov 

(b). Markov 

Figure 5.2. The Markov conversion of State W, 

Symbolic Hierarchical Automated Reliability and Performance Evaluator) [291. SHARPE is 

a modeling tool developed at Duke University. It provides several model types ranging 

from reliability block diagrams to comples semi Markov models, and allows the user to 

construct and analyze performance. reliability and availability models. However, this tool 

can only be used to analyze a model with size less then 200 states, thus we assume our 



I 
'I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

73 

resource-usagderrodrecovery model is a independent semi-hkkov process. The conver- 

sion of the waiting times of states are shown in Appendix C. 

In order to study the impact of dEerent types of errors, the irreducible semi-Markov 

process is converted to one with absorbing states in the following manner: 

a) with OFFL as the absorbing state (OFFL). 

b) with MULT and OFFL as the absorbing states (MULT), 

c) with SWE. MULT and OFFL as the absorbing states (SWE). 

d) with DASD. MULT and OFFL as the absorbing states (DASD). and 

e) with DUD,  SWE. MULT and OFFL as the absorbing states (ALL). 

In case (a) we assess system performability in which all but off-line failures are not 

recovered from. This actually provides us with the result of the system reliability. In case 

(b) we discontinue recovering from multiple errors. Here, we expect to measure the impact 

on the reward to a multiple error. Since multiple errors happen much more frequently 

than OFFL and the sojourn time is much longer comparing with others. we expect to meas- 

ure the impact of SWE and DASD on the reward to a MULT error. Thus, in case (c) we not 

only stop recovering from multiple and off-line failures but we also stop the recovery from 

software errors. In case (d) we recover from SWE errors but stop recovery from DASD 

errors. Finally. in case (e) we do not recover from any errors besides CHAN. 

We compare these scenarios first using the expected instantaneous reward rate E[X(t 11 

which is defined by Equation 5.1.3. then using the time-averaged expected accumulated 

. In all but case (a) and (e) we consider two variations: when a state such reward 

as DASD (MULT or SWE) is made absorbing, we can either let the reward rate in such a 

state be non-zero or we can set its reward rate to zero. The impact of the non-zero assign- 

EEY(t 11 
t 



I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 

74 

rnent is that upon reaching the absorbing state. the system continues to operate in a 

degraded mode. In the latter case, Le., zero reward assignment, we conservatively assume 

that the system stops functioning when it reaches the absorbing state(s1. 

In Figure 5.3(a), we plot E [ X ( t ) ]  for cases (a> and (b). In the case (b) we use two 

different assumptions for the reward rate for the MULT state, rrmn=0.27777 and 

r r , , = O .  We also plot E [ X ( t ) ]  for case (a> with the assumption that all states have 

exponentially distributed holding times. We note that such a Markovian assumption leads 

to an overestimation of the system’s capability to perform useful work. and the degree of 

overestimation increases as the system operating time increases. We also note that not 

recovering from multiple errors considerably degrades the system’s performability. More- 

over, changing from non-zero to zero reward rate further reduces the system’s effectiveness 

drastically. 

for cases c. d and e. In each case. except case e. 
E[X(t >I 

In Figure 5.3(b). we plot the 
: 

we also have two versions with reward rates for absorbing states being non-zero and zero. 

respectively. Note that not recovering from SWE errors degrades system effectiveness con- 

siderably compared with the effect of not recovering from DASD errors, provided we 

assume that absorbing states continues to provide service in a degraded mode. On the other 

hand, if we assume that absorbing states are system failure states. Le., zero reward rates for 

absorbing states. then not recovering from DASD failures is more severe than not recover- 

ing from SWE failures. This behavior is explained by the fact that the reward rate in the 

DASD state is about twice that in the SWE state (0.5708 versus 0.2736 in Table 5.1). Fig- 

ures 5.4(a) and 5.4(b) are the counterparts of Figures 5.3(a) and 5.3(b) where the measure 

rather than E [ X ( t  11. The trends are similar. 
E[Y ( t  11 

plotted is 
t 



I 
I 
I 
c 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
1 
R 
I 
I- 

15 20 
* 24 hours 

25 30 35 

0 5 10 15 20 25 30 3s 
Minutes 

(b) 

h.r. : reward rate) 

Figum 5.3. The expected reward rate. E[X(t  11 



1.0 

0.0 
0 

1.0 

I . .  . . I . . . . l . . . . I . . . . ~ , . , , I . ,  I 

5 10 15 20 
* 24 hours 

25 30 35 

t 

76 

Figure 5.4. The timeaveraged accumulated reward, E[Y(t )ut 



77 

Finally, in Figure 5.5. we show the distribution function of Y(w), the accumulated 

reward until system failure, for two cases: Markov versus semi-Markov. Both assume that 

the OFFL state is the only absorbing state. Once again we note that the Markovian assump- 

_ - _  tion implies an overestimation of the system's performability. 

0 2 4 6 8 
Reward (unit: 252*10000) 

Figure 5.5. Distribution of accumulated reward until system failure 



78 

CHAPTER6 

SUMMARY AND CONCLUSIONS 

6.1. Summaryof Results 

This thesis has developed a methodology to construct a resource- 

usage/reliability/performability model for a complex system based on real data. The model 

obtained is capable of reflecting both the normal and error behavior of the system. Both 

hardware and software reliability and their interactions are modeled. The effect of 

recovery through the built-in recovery mechanisms is also considered. By modeling the 

recovery process we are able to evaluate the severity of errors in general and the cost of 

specific error type in particular. Low-level error and resource-usage data to develop the 

model was collected on an IBM 3081 machine running the MVS operating system. The 

results of this research suggest that other production systems should be similarly analyzed 

so that a body of realistic data on computer error (including failure) and recovery models 

is available. 

Chapter 2 described the development of the model. using the low level data on 

resource usage and errors. A statistical clustering method (k-means clustering) was 

employed to characterize the resource usages into a few workload clusters. A two-level 

error data reduction ( m o r  coalescing and grouping) scheme was used to identify individual 

error incidents. Results showed that about 17% of errors are multiple errors (believed to be 

multiple manifestations of the same problem). The statetransition diagram for a multiple 



79 

error was obtained to study the interaction between system components (hardware and 

software). For example, it was seen that software and disk errors were strongly correlated. 

From the measurement data it was seen that the holding times in key operational and 

error states were not simple exponentials. A semi-Markov process was used to model the 

system behavior. This (semi-Markov) assumption was also validated by comparing the 

state occupancy probabilities predicted by the model with the actual state occupancy proba- 

bilities estimated from observed data. The results show that the proposed model provided a 

fairly accurate prediction of the real behavior. 

The analysis of model behavior was performed in Chapter 3. The analysis showed 

that on-line recovery is highly effective and provides the system with the ability to tolerate 

many faults and recover almost instantaneously. An analysis to extract the effect of the 

workload on the error probability showed that not only does a higher workload result in a 

higher error probability (for similar holding time). but the error probability also increases 

with increased holding time in a particular workload state. In other words, the error pro- 

bability appears to be a function of the absolute amount of resource consumed. be it 

through increased workload and/or increased holding times. An explanation for this "wear 

out" phenomenon is not clear since a large majority of the collected errors are transient. but 

it certainly calls into question the validity of the frequently used constant error probabil- 

ity assumption used in reliability modeling. 

The significance of the use of a semi-Markov model, as opposed to the simple Markov 

model, to describe the overall resource-usage/error/recovery process was also investigated. 

The results showed that a simple Markov model frequently overestimates the Uncondi- 

tional transition probabilities and underestimates the variance of the first passage times to 

the error states. The overestimation can lead to an unduly conservative reliability predic- 



80 

tion and the underestimation may lead to unduly optimistic reliability prediction. Both 

over- and under- estimations are not desirable. 

In Chapter 4. the software error data was used to build a software reliability model to 

describe the error and recovery processes in the M V S  operating system. The semi-Markov 

model developed provided a quantification of the operating system error characteristics and 

also the interaction between different types of OS errors. We estimate that in only 05% of 

the cases the measured software system is unable to recover. A detaiied model and analysis 

of multiple software errors. (which constitute approximately 17% of all software errors) 

was provided, showing how a single software problem can have multiple manifestations. 

To investigate the validity of this model, the duration of a multiple error predicted from 

the model was compared with the value estimated from the observed data. The agreement 

between two results was found to be within 1%. 

A measurement-based performability model was discussed in Chapter 5. A reward 

function. based on the service rate and the error rate in each state, was proposed. In order 

to investigate the impact due to different errors, the expected reward rate, as well as the 

cumulative reward. at time t were estimated. The results show that the software error 

@WE) degrades the system performance more severely than the disk error (DASD) 

although the error probability of DASD errors is about twice as much as that of SWE 

errors (0.169 versus 0.085). This may be due to the cost for DASD errors, which is less 

than that for SWE errors, i.e.. the reward rate in DASD state is higher than that in SWE 

state. If. however. both error types result in system failure then, as expected. the DASD 

error degrades the system performance more severely than the S W E  error. 

"he system performability under a Markov assumption is also estimated and com- 

pared with that estimated from the more realistic semi-Markov model. It was found that 



81 

I 
I 
I 
I 
I 
1 
1 
I 
I 
I 
1 
I 
B 
I 
I 

the Markov assumption overestimates the system performability and that the degree of 

overestimation increased with increased system operation time. Once again. this indicates 

that the traditional Markov process is not good enough to model a computer system and to 

provide accurate predictions. 

6.2 Suggestions for Future Research 

The results of this study suggest that other systems be similarly studied so that a 

wide body of realistic results on computer system hardware and software performability 

are available. This is useful both. from the point of view of validating existing analytical 

models and from the point of view of generating realistic models of system behavior. 

A possible extension is the area of adaptive model construction. The workload and 

error clustering methods employed here have potential for use in an adaptive algorithm 

which is capable of real-time model construction. The use of such models for adaptive tun-. 

ing for optimum performability under various conditions needs to be investigated. To be 

successful such a system would require learning capabilities so as to use valid past informa- 

tion together with some knowledge of the environment for both reconfiguration under 

failure and for system tuning. 

In this thesis we have used past data on errors and workload for model construction. 

It would be interesting to investigate the possibility of doing the same on the-basis of data 

generated from error/failure injection on a prototype or into a simulation model of a sys- 

tem. Such a procedure has the potential of providing realistic feedback to system designers 

early in the development stage. A comparison of the results from such a model with those 

obtained through analytical models would be instructive as well. 



82 

REFERENCES 

1 

I 

Castillo, X. and Siewiorek, D.P.. "A Performance-Reliability Model for. Computing 
Systems." IEEE, 1980. 
Castillo, X. and Siewiorek. D.P.. "A Workload Dependent Software Reliability 
Prediction Model." in A-oceedings of the 12th Internazwd Symposium on Fa&- 
Tdercvrt computing, Santa Monica, California. pp. 279-285. June 22-24.1982. 
Kulkami, V.G.. Nicola. V.F.. Smith. R.M.. and Trivedi. K.S.. "Numerical Evaluation 
of Performability Measures and Job Completion Time in Repairable Fault-Tolerant 
Systems." in Roceedings of the 16th Intemutwnal Symposium on FmJt-Tderant 
Computing. Vienna. Austria. pp. 252-257, July 1-4, 1986. 
Meyer. J.F.. "Closed-Form Solutions of Performability." IEEE Transactions on 
Computers. pp. 648-657. July 1982. 
Geist. R.M. and Trivedi. K.. "Ultrahigh Reliability Prediction for Fault-Tolerant 
Computer Systems." IEEE Trmactwns on Computers. pp. 1118-1127, December 
1983. . 
Trivedi. K., Dugan. J.B.. Geist. R., and Smotherman. M.. "Modeling Imperfect 
Coverage in Fault-Tolerant Systems." in firneedings of the 14th International 
Symposium on Fauit-Tolerant Computing. Kissimme, Florida, pp. 77-82. June 20-22. 
1984. 
Ng, Y.W. and Avizienis. A.A.. "A Unified Reliability Model for Fault-Tolerant 
Computers." IEEE Transactions on Computers. pp. 1002-101 1, November 1980. 
Goyal. A. and Tantawi. A.N.. "Numerical Evaluation of Guaranteed Availability." in 
Proceedings of the 15th Internationat Symposium on Fault-Tolerant Computing. Ann 
Arbor, Michigan. pp. 324-329, June 19-21.1985. 
Schoen. 0.. "On a Class of Integrated PerformancdReliability Models based on 
Queuing Networks." in Roceedings of the 16th In temutwd  Symposium on Fa&- 
Tolerant Computing, Vienna. Austria. pp. 90-95. July 1-4.1986. 
Iyer. R.K.. Rossetti, D.J.. and Hsueh. M.C.. "Measurement and Modeling of Computer 
Reliability as Mected by System Activity," ACM Transactions on Computer Systems. 
vol. 4. no. 3, pp. 214-237, August. 1986. 
Goel. A.L.. "Software Reliability Models: Assumptions and Applicability." IEEE 
Transactions on Sojhare  Engineering, vol. SE-11. pp. 1411-1423. December 1985. 
Yamada. S. and Osaki. S.. "Software Reliability Growth Modeling," IEEE 
Transactions on Software Enginsering. vol. SE-11. pp. 1431-1437, December 1985. 
Musa. J.. "The Measurement and Management of Sofware Reliability." IEEE 
Roceedings. vol. 68. pp. 1131-1143, September 1980. 

I 



r141 

83 

Littlewood. B, "Theories of Software Reliability: How good are they and how can 
they be improved?." ZEEE Trm&ns on softwme Engineering. vol. SE-6. pp. 
489-500, September 1980. 
Iyer, R. K. and Velardi. P.. "Hardware-Related Software Errors: Measurement and 
Analysis," I- Transactions on Software Engineering. vol, SE-11, no. 2. pp. 223- 
231, February 1985. 
Kelly, J. and Avizienis. A.A., "A Specification-Oriented Multi-Version Software 
Experiment." in Roceedings of the 13th Interncrtionul Symposium on Fault-Tolerant 
Computing, Milano, Italy, pp. 120-126, June 28-30, 1983. 
Beounes. C and Laprie. J.C.. "Dependability Evaluation of Complex Computer 
Systems: Stochastic Petri Net Modeling," in Roceedings of the 15th Internat- 
Symposium on FauZt-TdermLt Computing. Ann Arbor. Michigan. pp. 364-369. June 
19-21,1985. 
Castillo. X.. A Compatible Hardware/Software Reliability P r e d a w n  Model. PhD 
Thesis. Carnegie-Mellon University, July, 1981. 
IBM Corperation. "MVS Architecture Resource Measurement Facility (RMF) 
Reference and User's Guide." IBM publications. vol. LC28-1138-1. 
Ferrari, D.. Serazzi, G.. and Zeigner, A.. h1easuremen.t and Tuning of Computer 
Systems. Englewood Cliffs, NJ: PrenticcHall. Inc.. 1981. 
MacQueen. J.. "Some Methods for Classification and Analysis of Multivariate 
Observations." in Proceedings of the Fifth Berkeley Symposium on Mathematical 
Statistics and Probability. vol. 1. Berkeley, California, pp. 281-297. June 21-July 18. 
1965. 
Spath. H. C h s t e  Ancdysis Algoiithms. West Sussex, Engiand: Eiiis Horwood Ltd.. 
1980. 
IBM Corperation. Environmental Record Editing & Printing Program. International 
Business Machines Corporation, 1984. 
Iyer. R.K., Young, L.T., and Sridhar. V.. "Recognition of Error Symptoms in Large 
Systems." in Proceedings of the I986 IEEE-ACM Fall Joint Computer Conference. 
Dallas, Texas. pp. 797-806, November 26.1986.  
Howard. Ronald A., D y m d c  RoMil is t ic  Systems. New York: John Wiley & Sons, 
Inc... 1971. 
Trivedi. K.S.. Robability &i StcttiSticJ with Reliability, Queuing, and ComputetScience 
AppZkatWns. Englewood cliffs. N.J.: PrenticeHall, Inc., 1982. 
Hsueh. M.C.. Iyer. R.K.. and Trivedi. K.S.. "A Measurement-Based Performability 
Model for a Multiprocessor System." in Roceedings of the 2nd Irtte71LcztiorccJ 
Workshop on Applied Mathmnutks and Perfmnunce/Reliability Modeis of 
computet/GY- * ion S y s t m .  Rome. Italy, May 25-29.1987. 
Smith, R.M., Trivedi. K.S.. and Nicola. V.F.. "The Analysis of Computer Systems 
Using Markov Reward Processes." 1987. 
Sahner, R.A. and Trivedi. KS.. "SHARPE: Symbolic Hierachical Automated 
Reliability and Performance Evaluator." in User's Guide, Durham, NC. September 
1986. 



84 

APFTNDDLA 

(I). Error clustering 

I 

I 
I 
I 
I 
8 

Identical errors occurring within 5 minutes of each other were coalesced into a single 

event. This was done to ensure that the analysis is not biased by failure records relating to 

the same problem. The clustering algorithm analyzes the data and merges observations 

which occur in rapid succession and relate to the same problem. For each failure point. the 

following test was performed : 

IF <error type> = <type of previous error> AND 

<time away from previous error > < 5 minutes 

THEN 

<fold error into cluster being built > 

ELSE 

<start a new cluster> 

The result is a set of clustered errors. Associated with each cluster is information consist- 

ing of error classifications, number of points in the cluster, time of fitst and last errors in 

the cluster, and a variety of status data provided by the hardware and operating system. 

(XI). Error Grouping 

A visual examination of the error clusters showed the existence of sets of clusters 

occurring within a short time interval. The close time proximity among some clusters 

means a substantial increase in the system error rate during that period. The high error 



85 

1 '  

rate introduces the suspicion that the errors occurring during the high error rate period may 

be related, Le.. different errors may be due to a single cause, to multiple but related causes, 

or to multiple and independent causes. Therefore. the high error rate periods are formed by 

grouping all error clusters occurring within a small time interval of each other. This inter- 

val was chosen to be 5 minutes. The result is a set of grouped errors. The primary 

difference between a cluster and a group is that clusters contain only occurrences of the 

same error (same error type and machine state), wheras p u p s  ccntaia occarience of 

different errors (different error type or machines state). 



APPENDIXB 

86 

The Characteristics of the Resource-Usage/Error/RecoError/Recovery Model 

(I). Stochastic transition probability matrix. 

(Due to the size of the matrix. it is broken into two parts, (a) and (b).) 

0 
0.019 
0 
0.143 
0.023 
0.09 1 
0.034 
0.040 
0.093 
0 
0 
0 
0 
0 
0.018 
0.006 
0 
1 

0.35 1 
0 
0 
0.048 
0.045 
0 
0.034 
0.01 1 
0 
0 
0 
0 
0 
0 
0.036 
0.046 
0 
0 

0.055 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.108 
0.057 
1 
0 
0 
0 
0.013 
0 
0 
0 
0 
0 

0 
0 
0.014 
0.008 
0 
0 

0.135 
0.170 
0 
0.143 
0 
0 
0.054 
0.022 
0.007 
0 
0 
0 
0 
0 
0.013 
0.160 
0 
0 

0 
0 
0 
0.048 
0.015 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.013 
0.007 
0 
0 

0.2 16 
0.113 
0 
0.048 
0.046 
0.091 
0 
0.05 1 
0.015 
0 
0 
0 
0 

0 
0.144 
0.183 
0 
0 

0.027 
0.132 
0 
0.048 
0.099 
0 
0.087 
0 
0.063 
0 
0 
0 
0 
0 
0.314 
0.286 
0 
0 

0.108 
0.019 
0 
0 
0.038 
0.091 
0.067 
0.069 
0 
0 
0 
0 
0 
0 
0.329 
0.306 
0 
0 



i 
I 
I 
I 
1 
1 
i 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

WO 
Wl 
w2 

w3 

w, 
WS 

w7 

WS 

w6 

CPU 
c" 
SWE 
DASD 
MULT 
HWR 
SWB 
ALT 
OFFL 

87 

CPU C" SWE DASD MULT IFWB SWR ALT OFFL 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 0 0 0 0 
0.019 0.151 0.226 0.094 0 
0 0 0 0 0 
0 0.143 0.381 0 0 
0.015 0.227 0.386 0.106 0 
0 0.091 0.545 0.091 0 
0.007 0.262 0.383 0.060 0 
0.026 0.208 0.482 0.091 0 
0.007 0.231 0.502 0.082 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

(b) 

1 0 
1 0 
0.5 0.5 
1 0 
0.643 0.355 
0 0.017 
0 0 
0 0 
0 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.003 
0 
0 

(n). Waiting and holding time densities. Constant sojourn times are assigned in W,. W,. 

CPU. C" and recovery states. The others are shown below. 



88 

Waiting time density of W, 

0.4 
-0.00103t + 0.52483 e +.Ob f (t 1 = 0.00195 e 

-0.00103t + O.OOOl555 e 

Prob. 

. . . . . , . . . . , . . . . I  /,* 
0 20 40 60 80 100 120 

Duration (min.1 

Waiting time density of W, 

Waiting time density for W, 

-0.0006993t + 0.0001111 e 

Prob. 

0 20 40 60 
Duration hnin.) 

Waiting time density for W3 

Waitinglholding time densities for W, 

L - -0.00102Y f ( t )  = 0.00975 e-''ook + 0.0005774 e 

&Ob. 

# . . . . I . .  

0 20 40 60 80 100 120 
Duration bin.) 

Holding time density to W, 



89 

-0.002 f ( t  ) = 0.000728 e 

1 -0.001034 -0.0047974 + 0.002085 (e - e  

. . . . . . . . . . . . . . . . . . . . . . .  &ob. 

. . . * I . -  " . I * ' ~ " * ' ' . I * .  

Waiting/holding time densities for W, 

Rob. 

1 . . . . 1 . . . . 1 . . . . I . .  

0 20 40 60 80 100 120 
Duration 

Holding time density to DASD 

Holding time density to  SWE 

P l - O b  

__ 
Holding time density to MULT 



Waiting/holding time densities for W, 

Holding time density to the others 

Waiting time density of W, 

c 

Prob. 

0 10 20 30 
Duration (min.1 

Waiting time density of W, 

Waiting/holding time densities for W, 

I ).005925& 

-0.OOO64OSt + 0.000147 e &ob. 

0 20 40 60 80 100 120 
Duration (min,) 

Holding time density to DASD I 





92 

Waiting/holding time densities for W, 

Prob. 

L 

tA 1 -0.OOUIZt 4.010436l.t + 0.001238 (e - e  

0.0 
0 20 40 60 80 100 120 

Duration bin.) 

Holding time density to MULT 

EA 1 -0.00112lr -0.0044259r + 0.0010359 (e -e 

0 20 40 60 80 100 120 
Duration (min.) 

Holding time density to SWE 

Duration bin.) . - --- _- .- 

Holding time density to the others 



93 

- 4.00103t + 0.000939 e 
4.002 

4.0002102 
f ( t )  = 0.000146 e 

+ 0.000033 e 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  

hob.  

' * - . 2 r , .- ' d l  * . 

Waiting501dhg time densities for W, 

- - _ - _  - .. 

-0.oou f ( t>  O.OO094 e 
4.000937t ._ 4.006J945t + 0.0008355 (e e 

hob.  

* * . * ' * * * * ' * * * * ' . ' . .  I . . . . , , . . , , , . . . ,  

0 20 40 60 80 100 120 
Duration (min_l 

Holding time density to DASD 

- 4 . O O S t  f ( t )  = 0.00085 e 

1 4.000716t 4.0046877t 
t 0.000701(e - e  

Prob. 

0 20 40 60 80 100 120 
Duration (mid 

Holding time density to SWE 

Holding time density to the others 



94 

Waiting time densities for Error States 

Prob. + 0.0001861 e 4.014562 + 0.008365 e 

0 5 10 15 
Duration (xnin.1 

Waiting time density of DASD 

1 1 

Prob. 

0 5 10 
Duration (min.1 

15 

Waiting time density of SWE 

0.10, 

0.00 
0 5 10 15 

Duration 6nin.I 

Waiting time density of MULT 



I 
1 
I: 
1 
I 
I 

95 

APPENDIXC 

Semi-Markov to Markov Conversion 

I 
I 
1 
I 

The state conversions of the resource-usage/error/recovery process from a semi- 

Markov model to Markov model is demonstrated in this appendix. Here. we assume that 

the model is an independent semi-Markov process because of the limitation of SHARPE. 

The CPU bound workload state is used to estimate the system's performability. State 

W, is combined with W, because W, has very few observations. CHAN error state is also 

ignored because it has very few observations. The semi-Markov to Markov conversion of 

the workload states are shown from Figure (a) through (g) and the conversion of three 

error states are shown from Figure (h) through (j). After the conversion, the overall model 

is expanded from 15 states to 34 states. 

. .  . - .  

. . .. . -. -. . . . . .-. . 



Mp(O.01) 

96 

Mp(O.OOOSS28) 

(a). W, state 

(b). W, state 



97 

nrp(0.003) 

n 

EXP(0.004) 

n 

(d). W, state 

n 

u 
EXP(0.0004539) 

(e). W, state 



98 

Exp(0.000998) EXFfO.0144421) 

(f). W, state 

ExP(0.002) n 

(g). w, state 



99 

(h). DASD state 

EXP(0.044518) 

- - - - 

EXP(0.0036075) 

ns(0.0301092) ns(0.03817) 



I 
I 
I 
I 
n 
I 

100 

VITA 

Mei-Chen Hsueh was born on September 21, 1950 in Taiwan, Republic of China. She 

received her B.S. degree and M.S. degree both in Mathematics from Providence College. 

Taiwan. 1972 and Portland State University, Portland, Oregon. 1981, respectively= She 

obtained her Ph.D. degree in Computer Science from the University of Illinois at Urbana- 

Champaign, 1987. 

She joined the Department of Industrial Engineering, Fen-Chia University as a full 

time teaching assistant from 1972 to 1974 and worked as a quality assurance engineer for  

Ampex Corporation, Taiwan. from 1975 to 1979. While attending Portland State Univer- 

sity she worked as a teaching assistant for the Department of Mathematics and as a pro- 

gramming consultant for the Computer Center. After graduation in 1981, she joined Float- 

ing Point Systems. Inc. as a software engineer and left as a senior software engineer in 1983. 

As a graduate student in the University of Illinois. she was a research assistant in both the 

Department of Political Science (1983-1984) and the Computer Systems Group, Coordi- 

nated Science Laboratory (1984-1987). 



_ _ _ -  

a. REPORT SECURITY CLASSIFICATION 

!a. SECURITY CLASSIFICATION AUTHORITY 
Unclassified 

mCMSSIFIED 
ECURITY CLASSIFICATION OF THIS PAGE 

10. RESTRICTIVE MARKINGS 

3 . DISTRIBUTION I AVAILABILITY OF REPORT 
None 

I. PERFORMING ORGANIZATION REPORT NUMBER($) 

UILU-EHG-87-2258 (CSG-71) 

ia. NAME OF PERFORMING ORGANIZATION 
Coordinated Science Lab 
University of Illinois N/A 

iC ADDRESS (Gty, s t d e ,  and Z I P C d )  

1101 W. Springfield Avenue 
Urbana, IL 61801 

6b. OFFICE SYMBOL 
(/f dppkdbk) 

Approved for public release; 
distribution unlimited !b. DECLASSIFICATION /DOWNGRADING SCHEDULE 

5. MONITORING ORGANIZATION REPORT NUMBER($) 

7a. NAME OF MONITORING ORGANIZATION 

NASA, IBN, and ONR 

7b. ADDRESS (City, State, a d  ZIP C O W  IBK: 
NASA ResearchT&!&! 
Langley Research Ctr. 
Hampton, VA 23665 10598 TovS, f 

atson 

;;:it:% 2:; h s, 

I7 COSATI CODES 
FIELD GROUP SUB-GROU P , 

2 .  PERSONAL AUTHOR($) Hsueh, Mei-Chen 

18. SUBJECT TERMS (Continue or8 revem if rrmssrry and identie by Mock number) 
reliability, measures, research usage, failure, performa- 
bility, semi-Ffarkov, phase-type explanation, reward 

3a. TYPE OF REPORT 

6. SUPPLEMENTARY NOTATION 

13b. TIME COVERED 14. DATE OF REPORT (Year, Month. Day) 
Tec hni cal FROM TO September 1987 

a UNCLASSlFlEDNNLlMlTED 0 SAME AS RPT. 0 OTIC USERS 
22a NAME OF RESPONSIBLE INDIVIDUAL 

Unclassified 
22b. TELEPHONE (/&de Ared Codc) 22c. OFFICE SYMBOL 

This report describes measurement-based models based on real error-data collected on a 
multi-processor system. Models development from the raw error-data to the estimation of cumu- 
lative reward is described. 

A workload/:eliability model is developed based on low-level error and resource usage data 
collected on an IBM 3081 system during its normal operation in order to evaluate the resource- 
usage/error/recovery process in a large mainframe system. Thus, both normal and erronems 
behavior of the system are modeled. The results provide an understanding of the different types of 
errors and recovery processes. The measured data show that the holding times in key operational 
and error states are not simple exponentials and that a semi-h.larkov process is necessary to model 
the system behavior. A sensitivity analysis is performed to investigate the significance of using a 
semi-Markov process, as opposed to a Markov process. to model the measured system. 

20. DISTRIBUTION 1 AVAllABlllTY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION 

SECURITY CLASSIFICATION OF THIS PAGE 

UNCLAS S IF1 ED 
ID  FORM 1473,84 MAR 83 APR edition may be used until exhausted. 

All other editions are obsolete. 



UNCLASSIFIED - 
SECURITY CLAUIIICATION OC THIS C A Q I  

1 
7b. Address (continued) I 

800 N. Quincy St. 
Arlington, VA 22217 ( O N W  I 

19. Abstract (continued) I 
-4 software reliability model is also developed based on low-level error data from the MVS 

operating system running on an IBM 3081 machine to describe the software error and recovery pro- 
cess. The semi-3larkov model developed provides a quantification of system error characteristics 
and the interaction between different types of errors. As an example, we provide a detailed model 
and analysis of multiple errors, which constitute approximately 17 percent of all software errors 
and result in considerable recovery overhead. In addition, a measurement-based performability 
model based on real error-date collected is proposed. A reward function, based on the service rate 
and the error rate in each state, is defined in order to estimate the performability of the system and 
to depict the cost of different error types and recovery procedures. 

I UNCLASSIFIED 
SECURITY CLASSlCICATION O F  THIS P A G E  


